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What is a t-design?

Definition
Given a measure space (M, 1) and a set of polynomials on M, a t-design on M is a measure
space (X C M, v) satisfying [, fdv = [),fdpu for all polynomials f of degree f < t.
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What is a toric design?

Definition
Let T =R/2xZ. A T" t-design (or trigonmetric cubature rule of dimension n and degree t) is
a measure space (X C T",v) such that

/Xexp i;ajqu dl/(qﬁ)—/Tnexp i;og@ dpn(9)

for all o € Z" satisfying Z}’Zl\og\ < t, where p, is T"'s unit-normalized Haar measure.

A T" design is the same as a design on the diagonal unitary group T(U(n)).
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General theme for projective designs

(Q) What makes a projective [complex spherical, toric, unitary| design different from a
[complex spherical, toric, unitary] design? (A) The polynomials

A projective complex spherical design is a complex-projective design
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General theme for projective designs

(Q) What makes a projective [complex spherical, toric, unitary| design different from a
[complex spherical, toric, unitary] design? (A) The polynomials

Example

On T2, exp(i(¢1 + ¢2)) is a degree 2 monomial. But it does not descend to a well-defined
function on P(T?) = T2/U(1).

A projective complex spherical design is a complex-projective design
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What is a projective toric design?

Definition
Let P(T") = T"/U(1). A P(T") t-design is a measure space (X C P(T"),v) such that for
all a,b € {1,...,n}t,

t t

[ on 13005 = 08) | () = | exp 3005 — 05) | duna(9)

Jj=1 Jj=1

where we denote P(T")'s unit-normalized Haar measure by p,_ 1 since P(T") = T

A P(T") design is the same as a design on the maximal torus of the projective unitary group

T(PU(n)).
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Relationship to complex spherical designs

o Consider the parameterization

D, d) = 3070 /P el |n) of 1

unit vectors in C¢

QOO

%o ¢1 @2

V06 (9]0)+4/0 i ]1)4-+/1 1(0]2)
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Relationship to complex spherical designs

o Consider the parameterization

|0, @) = 2975 \/Pn €l |n) of 1

unit vectors in C¢
1

OO0

o ®1 ®2

\/1/2e=7/210)44/1/2 el (7/D|1)41/0 l(0)]2)
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Relationship to complex spherical designs

o Consider the parameterization

P, @) = Yz fe‘¢”\> 1

unit vectors in C

OO

%o o1 ®2

/ ei(57r/6)|0>+ / ei(737r/4)|1>+ / ei(ﬂ')|2>
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Relationship to complex spherical designs

o Consider the parameterization
p,6) = Y0z \/ el n) of 1
unit vectors in C

Theorem

A simplex t-design and a toric 1
t-design combine to yield a complex

1
spherical t-design.
OO
Theorem

, _ o b0 $1 ®2
A simplex t-design and a projective
toric t-design combine to yield a
complex projective t-design. | ST /9 0y /T3 =3/ 1) 1 /T ]2)
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Relationship to quantum state designs

Fact

Volume integration over Qg is equivalent to volume integration over A9~1 x T¢

Fact

Volume integration over CP9~1 = Q,/U(1) is equivalent to volume integration over
A9 x P(TY)

@ Simplex design x toric design yields complex spherical deisgn

e Simplex design x projective toric design yields complex projective (quantum state) design
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Relationship to quantum state designs

Fact

Volume integration over Qg is equivalent to volume integration over A9~1 x T¢

Fact

Volume integration over CP9~1 = Q,/U(1) is equivalent to volume integration over
A9 x P(TY)

@ Simplex design x toric design yields complex spherical deisgn
e Simplex design x projective toric design yields complex projective (quantum state) design

o With a suitable redefinition of a “design” on an infinite simplex, one can concatenate

such a design with a design on P(T°) to yield a rigged continuous-variable quantum
state design (losue et al. 2024)
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Simplex designs

Definition
The simplex A9~1 is the set of all probability
distributions on d elements

Ad-1 — {p = (po,--.,pa—1) € [0,1]¢

dz_:lpn:l}

n=0
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Simplex designs

Definition
The simplex A9~1 is the set of all probability
distributions on d elements

dz_:lpn:l}

n=0

Ad-1 — {p = (po,--.,pa—1) € [0,1]¢

Example (Simplex 2-design)
The centroid
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Simplex designs

Definition
The simplex A9~1 is the set of all probability
distributions on d elements

Ad_l = {P = (pOa 000 an—l) € [0’ 1]d

Example (Simplex 2-design)
The centroid and the extremal points of the simplex
form a 2-design

J. T. losue (UMD) arXiv:2311.13479
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Overview

© Complete sets of mutually unbiased bases
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Complete set of mutually unbiased bases (CS-MUBs)

Definition

The orthonormal bases

By, ...,Bg of C? form a
CS-MUBs if |()]¢)|> = 1/d for
all ¢ € Bj and ¢ € B; when
i#j.
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Complete set of mutually unbiased bases (CS-MUBs)

A collection of phases

Rieiliiirior) {019 i j ke {1,... d}} formsa CS-MUBs if
The orthonormal bases
d @ (Orthonormal)
By, ..., By of C? form a — 0 i)
CS-MUBs if |(1h|¢)|*> = 1/d for Vi jy ko 3 e = dj, and
all ¢ € Bj and ¢ € Bj when @ (Mutually unbiased)
i#J ) Vi j kom: |0 e M = g,
Each ¢'J ¢ T¢
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Complete set of mutually unbiased bases (CS-MUBs)

A collection of phases

Definition {019 |i.j,ke{l,...,d}} forms a CS-MUBs if
The orthonormal bases
d @ (Orthonormal)
By, ...,Bg of C? form a — o d ")
CS-MUBs if |()|¢)[?> = 1/d for Visjok o )=y €T = ddj, and
all 9 € B; and ¢ € B;j when @ (Mutually unbiased)
. . i, (2
s ) Vit jkm: [ €@ 4N = d.

Each 6'Y € T, but overall phase does not matter, so really 0V ¢ P(T9)
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CS-MUBs and projective toric 2-designs

Theorem

A collection © = {0/ | i,j € {1,...,d}} C P(T9) forms a C5-MUBs iff
Q (Orthonormal) Yi,j, k : 39 0 =6,") = ddjk, and
© O is a projective toric 2-design.

P1
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CS-MUB example

Let d = p be a prime. Then 9;(’] = 2f(jk + ik?) is a projective toric 2-design and satisfies
orthonormality.

{ concatenate with simplex design

By, ..., Bg forms a CS-MUBs for CP, where By = {|j) | j € {1,...,p}} and
Bi = {I¥¥) = Z5 X1 €% k) i€ {1,...,p}}

This is the canonical example of a CS-MUBs from (Wootters and Fields 1989)
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Infinite dimensions

{ew = (Ok + pk2) oy | 99 € [0, 277)} is a P(T) 2-design. That is,

on pom
L/ W/ m el(efvuebw,efﬂ,gj,v) 40 dp = / ol(Batdo—te=0d) 4,
2m)2 Jo Jo P(T)

{ concatenate with simplex “design”

{lj) |jeN}uU {Zf’zl lWk+ek?) 1)y | 9, € [0, 27r)} forms a design on the space of tempered
distributions S(R)’ (rigged continuous-variable quantum state 2-design)
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Overview

© Bound on minimal projective toric designs
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Root lattices and crystal ball numbers

o Consider the root lattice A,—1 of T(PU(n))
® Theroots of A,_1 are R ={e; —ej|i,jc{l,...,n}}

@ The set of all points on A,_1 that are at most a distance s away from the origin is sR

The crystal ball numbers (OEIS:A108625) for A,—1 are Gp_1(s) = |sR]|

Theorem (Conway and Sloane 1997)
Gn-1(s) =3F2(1 —n,—s,n;1,1;1)

J. T. losue (UMD) arXiv:2311.13479 Bound on minimal projective toric designs 16 /27


https://oeis.org/A108625

Minimal projective toric designs

o Define P :=sR={q—r|q,re Ng, D1 gi=>.74ri=s}
o Gpy(s) = |P")]

@ An element q —r € Ps(n) corresponds to a monomial ol 27101 of degree < s on
P(T™)
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Minimal projective toric designs

o Define P :=sR={q—r|q,re Ng, D1 gi=>.74ri=s}
o Gpy(s) = |P")]

@ An element q —r € Ps(n) corresponds to a monomial ol 27101 of degree < s on
P(T™)

Theorem
Let n € N and X a discrete, finite P(T") t-design.
o IX| > Gos([£/2]).

e If t is even and X saturates this bound, then X is uniformly weighted.
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Overview

@ Projective toric designs from difference sets
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Group designs

o Let X be a P(T?) t-design and X = T
@ Then X = zT = {(0z1,0z,...) | 0 € [0,27)} for some z € Z>

e X is a t-design iff z satisfies (B; difference set)

Zzajzzzbj A ({aj ‘je{lw"’t}}:{{bj lje{L,....t}})
=1 =1
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Group designs

o Let X be a P(T?) t-design and X = T
@ Then X = zT = {(0z1,0z,...) | 0 € [0,27)} for some z € Z>

e X is a t-design iff z satisfies (B; difference set)

Zzajzzzbj A ({aj ‘je{lw"’t}}:{{bj lje{L,....t}})
=1 =1

Example

Let z € Z*° be z, = t. Then the group {(z.0)a.en | 6 € [0,27)} with its Haar measure is a
P(T°) t-design.
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Finite group designs

Definition J

z € Zp, is a By mod m set of size n if the sum mod m of any t element of z is unique.
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Finite group designs

Definition

z € Zp, is a By mod m set of size n if the sum mod m of any t element of z is unique. J

Theorem

Group P(T") t-designs isomorphic to the cyclic group Zn, are in one-to-one correspondence
with B; mod m sets of size n.
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Finite group designs

z € Zp, is a By mod m set of size n if the sum mod m of any t element of z is unique.

Definition J

Theorem

Group P(T") t-designs isomorphic to the cyclic group Zn, are in one-to-one correspondence
with B; mod m sets of size n.

Corollary
Any B; mod m set must have size n satisfying m > G,_1(|t/2]). J
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Singer sets

P . _1)tH .
@ Studying finite fields, Singer constructed B; mod ("},)fl sets of size n whenever n — 1
is a prime power.

@ Hence, via these Singer sets, we have an explicit construction of P(T") t-designs of size
1)t , . . .
('7”1,)7_21 for all n and t, where n’ is the smallest integer > n such that n’ — 1 is a prime
power.

J. T. losue (UMD) arXiv:2311.13479 Projective toric designs from difference sets 21 /27



Singer sets

1
Studying finite fields, Singer constructed B; mod % sets of size n whenever n — 1

is a prime power.

@ Hence, via these Singer sets, we have an explicit construction of P(T") t-designs of size

(n'=1)t*1-1
n’—2
power.

for all n and t, where n’ is the smallest integer > n such that n’ — 1 is a prime

Twirling over an overall factor of a U(1) (2t)-design, we can turn a P(T") t-design into a
T" (2t)-design.

@ This therefore gives explicit T" (2t)-designs of size (2t + 1) X % for all t and n

J. T. losue (UMD) arXiv:2311.13479 Projective toric designs from difference sets 21 /27



Sidon sets

@ When t = 2, a B; mod m set of size n is a Sidon set of size n mod m

Lower bound Singer construction
Goalls2h o= 11 R 1)1y

J. T. losue (UMD) arXiv:2311.13479 Projective toric designs from difference sets 22 /27



Sidon sets

@ When t = 2, a B; mod m set of size n is a Sidon set of size n mod m

Lower bound Singer construction
Goalls2h o= 11 R 1)1y

The Singer construction therefore yields minimal P(T") 2-designs whenever n — 1 is a prime
power
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Overview

© Almost minimal quantum state designs
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Almost minimal quantum state 2-designs

@ Recall: simplex design x projective toric design yields
quantum state design
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Almost minimal quantum state 2-designs

@ Recall: simplex design x projective toric design yields

quantum state design p2

@ Simplex extremal points correspond to basis states
{11),..., )y cC?

P1

Po

J. T. losue (UMD) arXiv:2311.13479 Almost minimal quantum state designs 24 /27



Almost minimal quantum state 2-designs

@ Recall: simplex design x projective toric design yields

quantum state design p2

1
@ Simplex extremal points correspond to basis states
{11),..., )y cC?
@ Simplex centroid becomes ﬁ Zzzl % |k), where the
phases ¢ € P(T") come from a design p1
Po
1
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Almost minimal quantum state 2-designs

@ Recall: simplex design x projective toric design yields

quantum state design p2

@ Simplex extremal points correspond to basis states
{11),..., )y cC?

@ Simplex centroid becomes ﬁ Zzzl % |k), where the
phases ¢ € P(T") come from a design p1
Po

Singer's Sidon sets yield quantum state 2-designs of size
d? + 1 whenever d + 1 is a prime power J

These 2-designs were first constructed in (Bodmann and Haas 2016) via a totally different method
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Almost minimal quantum state 2-designs

@ Recall: simplex design x projective toric design yields

quantum state design p2

@ Simplex extremal points correspond to basis states
{11),..., )y cC?

@ Simplex centroid becomes ﬁ Zzzl % |k), where the

phases ¢ € P(T") come from a design p1

Singer’'s Sidon sets yield quantum state 2-designs of size J Po 1

d? + 1 whenever d + 1 is a prime power

@ Recall that minimal quantum state 2-designs (SIC-POVMs) are of size d? (though it is
still unknown if SIC-POVMs always exist)

These 2-designs were first constructed in (Bodmann and Haas 2016) via a totally different method
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Overview

© Outlook
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Summary and open questions

@ We studied projective toric designs and their relationship to many other mathematical
objects

@ We constructed infinite families of toric and projective toric t-designs
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objects
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@ Is our lower bound on the size of P(T") t-designs tight? (Conjecture: when t is even)
@ Must minimal designs be group designs?

e Connection to affine/projective planes via relationship to CS-MUBs?

@ Nice simplex t-designs to generate quantum state designs via our infinite family of
projective toric designs?
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Summary and open questions

@ We studied projective toric designs and their relationship to many other mathematical
objects

@ We constructed infinite families of toric and projective toric t-designs

@ Is our lower bound on the size of P(T") t-designs tight? (Conjecture: when t is even)
@ Must minimal designs be group designs?

e Connection to affine/projective planes via relationship to CS-MUBs?

@ Nice simplex t-designs to generate quantum state designs via our infinite family of
projective toric designs?

o Concatenating designs yields a design on (effectively) the cartesion product; what about
twisted products?

J. T. losue (UMD) arXiv:2311.13479 Outlook 26 /27



References

[
[

) & & )

Bodmann, Bernhard G. and John Haas (Sept. 2016). “Achieving the orthoplex bound and constructing
weighted complex projective 2-designs with Singer sets”. In: Linear Algebra and its Applications 511,

pp. 54-71.

Conway, J. H. and N. J. A. Sloane (Nov. 1997). “Low-dimensional lattices. VII. Coordination sequences”.
In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
453.1966, pp. 2369-2389.

losue, Joseph T. et al. (Nov. 2023). “Projective toric designs, difference sets, and quantum state designs”.
In: arXiv:2311.13479.

losue, Joseph T. et al. (Feb. 2024). “Continuous-Variable Quantum State Designs: Theory and
Applications”. In: Phys. Rev. X 14, p. 011013.

Kuperberg, Greg (May 2006). “Numerical Cubature from Archimedes’ Hat-box Theorem”. In: SIAM
Journal on Numerical Analysis 44.3, pp. 908-935.

Tao, Terence and Van H Vu (2006). Additive combinatorics. \/ol. 105. Cambridge Studies in Advanced
Mathematics. Cambridge University Press.

Wootters, William K and Brian D Fields (Sept. 1989). “Optimal state-determination by mutually unbiased
measurements”. In: Annals of Physics 191.2, pp. 363-381.

J. T. losue (UMD) arXiv:2311.13479 Outlook 27 /27



Additional slides



What is a t-design?

o Let X C R? be the triangle with vertices
(0,0), (1,0), (0,1)
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What is a t-design?

o Let X C R? be the triangle with vertices 10
(0,0), (1,0), (0,1)

o Let D = {(0,1/2),(1/2,0),(1/2,1/2)} C X

N
D is a 2-design for X
If g(x,y) = ax® + by? + cxy + dx + ey + f, then
1 0 *
¢ > eluy)= / g(x,y) dxdy w w
(x,y)€D X 0 1

J. T. losue (UMD) arXiv:2311.13479 Additional slides 1/8



Fubini-Study measure

Fact

Volume integration over CP9~1 is equivalent to volume integration over A9~ x T9-1

o Consider |p, ¢) = 3922 /ppe¥n |n) for p € A9 and ¢ € {0} x (R/27Z)7~
e Consider |a) == Z —0 Yag|n) for a, € C, o € §291
o The natural measure on S29 1 is T[] d2a,

e Under o — ./pnei¢", the measure becomes

ei¢n . i¢n
i\/pnpe
2a, — dp, de, - absdet | 2VP 5

e*1¢n s 71¢)
27p, WPn€

= dpn dfbn

J. T. losue (UMD) arXiv:2311.13479 Additional slides

1o Td-1
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What is a design?

Definition (Cubature)

Let X C R"” and diz a measure on X. A degree t cubature rule for X is a finite collection of
points D C R"” and a weight function w: D — R satisfying

S w(x)g(x) = /X g(x) du(x)

xeD

for any polynomial g € R[xy, ..., x| of degree t or less.
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What is a design?

Definition (Cubature)

Let X C R"” and diz a measure on X. A degree t cubature rule for X is a finite collection of

points D C R"” and a weight function w: D — R satisfying

S w(x)g(x) = /X g(x) du(x)

xeD

for any polynomial g € R[xy, ..., x| of degree t or less.

Definition (Design)

A t-design for X is a degree t cubature rule (D, w) satisfying D C X and Im(w) C (0, 00).
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Why are designs interesting?

X =59

X =U(d) X = Cpa-1

spherical design unitary design qudit design

Numerical integration
Error correction
Randomized benchmarking
State tomography

State distinction

Shadow tomography

J. T. losue (UMD)

X CR"? e.g. Stroud 1971

X =54 e.g. Conway, Sloane 1999

X =1U(d) e.g. Dankert, Cleve, Emerson, Livine 2006
X =CPI! eg Scott 2006

X = CP! eg. Ambainis, Emerson 2007

X =CP9"! eg Huang, Kueng, Preskill 2020
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What is a quantum state design?

o Complex-projective space CP9~1 = §29-1/1J(1) is the set of all pure quantum states in
C9 identified up to proportionality

Definition (Complex-projective t-design)

Let X € CPY"! and w: X — (0,00). The pair (X, w) is a complex-projective t-design if

> w@)f()= [ fw)du

peX Cpe—t

for any polynomial f(1)) of degree t or less in the amplitudes and conjugate amplitudes of |1)).
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Let X ¢ CPY"! and w: X — (0,00). The
pair (X, w) is a complex-projective
t-design if

peX

for any polynomial f(1)) of degree t or less
in the amplitudes and conjugate
amplitudes of [¢).

J. T. losue (UMD)

arXiv:2311.13479

Generalization to arbitrary measure space

Let X ¢ CP9"L. The measure space
(X, %, 1) is a complex-projective t-design
if

/ (6) du(@) = / () dop
X CPpd—1

for any polynomial f (1) of degree t or less
in the amplitudes and conjugate
amplitudes of |4)).

Additional slides
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Simplex, torus, and complex-projective designs
o Consider the parameterization |p, ¢) = Zg;é \/ﬁei‘“ |n) for p € A9t and
¢ € (R/2rz)d1 = Td
o Consider the projection 7m: CP9~1 — Ad=1 7(y) = (](0]1/}>\2 ooy |(d = 1]1/1>|2>
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Simplex, torus, and complex-projective designs

o Consider the parameterization |p, ¢) = Zg;é /Pnei® |n) for p € A9 and
¢ € (R/2rz)d1 = Td

o Consider the projection 7m: CP9~1 — Ad=1 7(y) = (](0]1/1>\2 ooy |(d = 1]1/1>|2>

Fact J

Volume integration over CP9~1 is equivalent to volume integration over A9~1 x T9-1
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Simplex, torus, and complex-projective designs

o Consider the parameterization |p, ¢) = Zg;é /Pnei® |n) for p € A9 and
¢ € (R/2rz)d1 = Td

o Consider the projection 7m: CP9~1 — Ad=1 7(y) = (](O]q/}>\2 ooy |(d = 1]1/1>|2>

Fact
Volume integration over CP9~1 is equivalent to volume integration over A9~1 x T9-1

Theorem (Informal)
If X is a CP9! t-design, then 7(X) is a A9~1 t-design
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Simplex, torus, and complex-projective designs

o Consider the parameterization |p, ¢) = Zg;é /Pnei® |n) for p € A9 and
¢ € (R/2rz)d1 = Td

o Consider the projection 7: CP9~1 — A9=1 7(y) = (](0]1@\2 yees [(d = 1]1/1>|2>

Fact

Volume integration over CP9~1 is equivalent to volume integration over A9~1 x T9-1

Theorem (Informal)

If X is a CP9! t-design, then 7(X) is a A9~1 t-design

Theorem (Informal)

If P c A9t and S C T ! are simplex and torus t-designs, then P x S is a CP9~1 t-design

J. T. losue (UMD) arXiv:2311.13479 Additional slides
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A useful characterization of state designs

Lemma

Let X C CPY~1. The measure space (X, ¥, i) is a complex-projective t-design iff

| oo aue) = [ () av
X Cpd—1
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A useful characterization of state designs

Lemma

Let X C CPY~1. The measure space (X, ¥, i) is a complex-projective t-design iff

o o N
e aus = [ (owh*a =t

Example (Projector onto the symmetric subspace)
° I'Igd) =1
o N{" = 1 (1®1+SWAP)

J. T. losue (UMD) arXiv:2311.13479 Additional slides
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