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What is a t-design?

Definition

Given a measure space (M, 𝜇) and a set of polynomials on M, a t-design on M is a measure
space (X ⊂ M, 𝜈) satisfying

∫︀
X f d𝜈 =

∫︀
M f d𝜇 for all polynomials f of degree f ≤ t.

M = Sd Spherical design M = U(d) Unitary design

M = Ωd Complex spherical design M = PU(d) Projective unitary design

M = CPd Quantum state design M = Δd Simplex design

M = T d Toric design M = P(T d) Projective toric design

M = S(R)′ Rigged (continuous variable)
quantum state design
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What is a toric design?

Definition

Let T = R/2𝜋Z. A T n t-design (or trigonmetric cubature rule of dimension n and degree t) is
a measure space (X ⊂ T n, 𝜈) such that

∫︁
X
exp

⎛⎝i

n∑︁
j=1

𝛼j𝜑j

⎞⎠d𝜈(𝜑) =

∫︁
T n

exp

⎛⎝i

n∑︁
j=1

𝛼j𝜑j

⎞⎠ d𝜇n(𝜑)

for all 𝛼 ∈ Zn satisfying
∑︀n

j=1|𝛼j | ≤ t, where 𝜇n is T n’s unit-normalized Haar measure.

A T n design is the same as a design on the diagonal unitary group T (U(n)).
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General theme for projective designs

(Q) What makes a projective [complex spherical, toric, unitary] design different from a
[complex spherical, toric, unitary] design? (A) The polynomials

Example

On T 2, exp(i(𝜑1 + 𝜑2)) is a degree 2 monomial. But it does not descend to a well-defined
function on P(T 2) = T 2/U(1).

A projective complex spherical design is a complex-projective design
J. T. Iosue (UMD) arXiv:2311.13479 Introduction 5 / 27
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What is a projective toric design?

Definition

Let P(T n) = T n/U(1). A P(T n) t-design is a measure space (X ⊂ P(T n), 𝜈) such that for
all a, b ∈ {1, . . . , n}t ,

∫︁
X
exp

⎛⎝i

t∑︁
j=1

(𝜑aj − 𝜑bj )

⎞⎠d𝜈(𝜑) =

∫︁
T n

exp

⎛⎝i

t∑︁
j=1

(𝜑aj − 𝜑bj )

⎞⎠ d𝜇n−1(𝜑)

where we denote P(T n)’s unit-normalized Haar measure by 𝜇n−1 since P(T n) ∼= T n−1.

A P(T n) design is the same as a design on the maximal torus of the projective unitary group
T (PU(n)).
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Relationship to complex spherical designs

Consider the parameterization
|p, 𝜑⟩ :=

∑︀d−1
n=0

√
pn e

i𝜑n |n⟩ of
unit vectors in Cd

Theorem

A simplex t-design and a toric
t-design combine to yield a complex
spherical t-design.

Theorem

A simplex t-design and a projective
toric t-design combine to yield a
complex projective t-design.

1

1

1 •

p0
p1

p2

𝜑0

×
𝜑1

×
𝜑2

• • •

√
0 ei(0)|0⟩+

√
0 ei(0)|1⟩+

√
1 ei(0)|2⟩
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Relationship to quantum state designs

Fact

Volume integration over Ωd is equivalent to volume integration over Δd−1 × T d

Fact

Volume integration over CPd−1 = Ωd/U(1) is equivalent to volume integration over
Δd−1 × P(T d)

Simplex design × toric design yields complex spherical deisgn

Simplex design × projective toric design yields complex projective (quantum state) design

With a suitable redefinition of a “design” on an infinite simplex, one can concatenate
such a design with a design on P(T∞) to yield a rigged continuous-variable quantum
state design (Iosue et al. 2024)
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Simplex designs

Definition

The simplex Δd−1 is the set of all probability
distributions on d elements

Δd−1 =

{︃
p = (p0, . . . , pd−1) ∈ [0, 1]d

⃒⃒⃒⃒ d−1∑︁
n=0

pn = 1

}︃

Example (Simplex 2-design)

The centroid and the extremal points of the simplex
form a 2-design

1

1

1

p0

p1

p2
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Complete set of mutually unbiased bases (CS-MUBs)

Definition

The orthonormal bases
B0, . . . ,Bd of Cd form a
CS-MUBs if |⟨𝜓|𝜑⟩|2 = 1/d for
all 𝜓 ∈ Bi and 𝜑 ∈ Bj when
i ̸= j .

⇐⇒

A collection of phases
{𝜃i ,jk | i , j , k ∈ {1, . . . , d}} forms a CS-MUBs if

1 (Orthonormal)

∀i , j , k :
∑︀d

ℓ=1 e
i(𝜃i,jℓ −𝜃i,kℓ ) = d𝛿jk , and

2 (Mutually unbiased)

∀i ̸= j , k ,m :
⃒⃒⃒∑︀n

ℓ=1 e
i(𝜃i,kℓ −𝜃j,mℓ )

⃒⃒⃒2
= d .

Each 𝜃i ,j ∈ T d , but overall phase does not matter, so really 𝜃i ,j ∈ P(T d)
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CS-MUBs and projective toric 2-designs

Theorem

A collection Θ =
{︀
𝜃i ,j | i , j ∈ {1, . . . , d}

}︀
⊂ P(T d) forms a CS-MUBs iff

1 (Orthonormal) ∀i , j , k :
∑︀d

ℓ=1 e
i(𝜃i,jℓ −𝜃i,kℓ ) = d𝛿jk , and

2 Θ is a projective toric 2-design.

1

1

1

•

•
•

•

p0

p1

p2
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CS-MUB example

Let d = p be a prime. Then 𝜃i ,jk = 2𝜋
p (jk + ik2) is a projective toric 2-design and satisfies

orthonormality.

⇕ concatenate with simplex design

B0, . . . ,Bd forms a CS-MUBs for Cp, where B0 = {|j⟩ | j ∈ {1, . . . , p}} and

Bi =
{︁
|𝜓i ,j⟩ = 1√

p

∑︀d
k=1 e

i𝜃i,jk |k⟩ | j ∈ {1, . . . , p}
}︁

This is the canonical example of a CS-MUBs from (Wootters and Fields 1989)
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Infinite dimensions

{︁
𝜃𝜙,𝜗 =

(︀
𝜗k + 𝜙k2

)︀
k∈N | 𝜗, 𝜙 ∈ [0, 2𝜋)

}︁
is a P(T∞) 2-design. That is,

1

(2𝜋)2

∫︁ 2𝜋

0

∫︁ 2𝜋

0
e
i
(︁
𝜃𝜙,𝜗
a +𝜃𝜙,𝜗

b −𝜃𝜙,𝜗
c −𝜃𝜙,𝜗

d

)︁
d𝜗 d𝜙 =

∫︁
P(T∞)

ei(𝜑a+𝜑b−𝜑c−𝜑d ) d𝜇∞

⇕ concatenate with simplex “design”

{|j⟩ | j ∈ N} ∪
{︁∑︀∞

k=1 e
i(𝜗k+𝜙k2) |k⟩ | 𝜗, 𝜙 ∈ [0, 2𝜋)

}︁
forms a design on the space of tempered

distributions S(R)′ (rigged continuous-variable quantum state 2-design)
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Root lattices and crystal ball numbers

Consider the root lattice An−1 of T (PU(n))

The roots of An−1 are ℛ = {ei − ej | i , j ∈ {1, . . . , n}}

The set of all points on An−1 that are at most a distance s away from the origin is sℛ

The crystal ball numbers (OEIS:A108625) for An−1 are Gn−1(s) := |sℛ|

Theorem (Conway and Sloane 1997)

Gn−1(s) = 3F2(1− n,−s, n; 1, 1; 1)

J. T. Iosue (UMD) arXiv:2311.13479 Bound on minimal projective toric designs 16 / 27
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Minimal projective toric designs

Define P
(n)
s := sℛ = {q − r | q, r ∈ Nn

0,
∑︀n

i=1 qi =
∑︀n

i=1 ri = s}

Gn−1(s) = |P(n)
s |

An element q − r ∈ P
(n)
s corresponds to a monomial ei

∑︀n
j=1(qj−rj )𝜑j of degree ≤ s on

P(T n)

Theorem

Let n ∈ N and X a discrete, finite P(T n) t-design.

|X | ≥ Gn−1(⌊t/2⌋).
If t is even and X saturates this bound, then X is uniformly weighted.
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Group designs

Let X be a P(T∞) t-design and X ∼= T

Then X = zT = {(𝜃z1, 𝜃z2, . . . ) | 𝜃 ∈ [0, 2𝜋)} for some z ∈ Z∞

X is a t-design iff z satisfies (Bt difference set)⎛⎝ t∑︁
j=1

zaj =
t∑︁

j=1

zbj

⎞⎠ ⇐⇒ ({{aj | j ∈ {1, . . . , t}}} = {{bj | j ∈ {1, . . . , t}}})

Example

Let z ∈ Z∞ be za = ta. Then the group {(za𝜃)a∈N | 𝜃 ∈ [0, 2𝜋)} with its Haar measure is a
P(T∞) t-design.
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Finite group designs

Definition

z ∈ Zn
m is a Bt mod m set of size n if the sum mod m of any t element of z is unique.

Theorem

Group P(T n) t-designs isomorphic to the cyclic group Zm are in one-to-one correspondence
with Bt mod m sets of size n.

Corollary

Any Bt mod m set must have size n satisfying m ≥ Gn−1(⌊t/2⌋).
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Singer sets

Studying finite fields, Singer constructed Bt mod (n−1)t+1−1
n−2 sets of size n whenever n − 1

is a prime power.

Hence, via these Singer sets, we have an explicit construction of P(T n) t-designs of size
(n′−1)t+1−1

n′−2 for all n and t, where n′ is the smallest integer ≥ n such that n′ − 1 is a prime
power.

Twirling over an overall factor of a U(1) (2t)-design, we can turn a P(T n) t-design into a
T n (2t)-design.

This therefore gives explicit T n (2t)-designs of size (2t + 1)× (n′−1)t+1−1
n′−2 for all t and n
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Sidon sets

When t = 2, a Bt mod m set of size n is a Sidon set of size n mod m

Lower bound Singer construction

Gn−1(⌊t/2⌋) = n(n − 1) + 1 (n′−1)t+1−1
n′−2 = n′(n′ − 1) + 1

The Singer construction therefore yields minimal P(T n) 2-designs whenever n − 1 is a prime
power
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Overview

1 Introduction

2 Complete sets of mutually unbiased bases

3 Bound on minimal projective toric designs

4 Projective toric designs from difference sets

5 Almost minimal quantum state designs

6 Outlook
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Almost minimal quantum state 2-designs

Recall: simplex design × projective toric design yields
quantum state design

Simplex extremal points correspond to basis states
{|1⟩ , . . . , |d⟩} ⊂ Cd

Simplex centroid becomes 1√
d

∑︀d
k=1 e

i𝜑k |k⟩, where the

phases 𝜑 ∈ P(T n) come from a design

Singer’s Sidon sets yield quantum state 2-designs of size
d2 + 1 whenever d + 1 is a prime power

1

1

1

p0

p1

p2

Recall that minimal quantum state 2-designs (SIC-POVMs) are of size d2 (though it is
still unknown if SIC-POVMs always exist)

These 2-designs were first constructed in (Bodmann and Haas 2016) via a totally different method
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Summary and open questions

We studied projective toric designs and their relationship to many other mathematical
objects

We constructed infinite families of toric and projective toric t-designs

Is our lower bound on the size of P(T n) t-designs tight? (Conjecture: when t is even)

Must minimal designs be group designs?

Connection to affine/projective planes via relationship to CS-MUBs?

Nice simplex t-designs to generate quantum state designs via our infinite family of
projective toric designs?

Concatenating designs yields a design on (effectively) the cartesion product; what about
twisted products?
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Additional slides



What is a t-design?

Let X ⊂ R2 be the triangle with vertices
(0, 0), (1, 0), (0, 1)

Let 𝒟 = {(0, 1/2), (1/2, 0), (1/2, 1/2)} ⊂ X

𝒟 is a 2-design for X

If g(x , y) = ax2 + by2 + cxy + dx + ey + f , then

1

6

∑︁
(x ,y)∈𝒟

g(x , y) =

∫︁
X
g(x , y)dx dy

0 1

0

1

x

y
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Fubini-Study measure

Fact

Volume integration over CPd−1 is equivalent to volume integration over Δd−1 × T d−1

Consider |p, 𝜑⟩ :=
∑︀d−1

n=0

√
pne

i𝜑n |n⟩ for p ∈ Δd−1 and 𝜑 ∈ {0} × (R/2𝜋Z)d−1 ∼= T d−1

Consider |𝛼⟩ :=
∑︀d−1

n=0 𝛼n |n⟩ for 𝛼n ∈ C, 𝛼 ∈ S2d−1

The natural measure on S2d−1 is
∏︀

n d
2𝛼n

Under 𝛼n ↦→ √
pne

i𝜑n , the measure becomes

d2𝛼n ↦→ dpn d𝜑n · abs det

⎛⎝ ei𝜑n
2
√
pn

i
√
pne

i𝜑n

e−i𝜑n

2
√
pn

−i
√
pne

−i𝜑n

⎞⎠ = dpn d𝜑n
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What is a design?

Definition (Cubature)

Let X ⊂ Rn and d𝜇 a measure on X . A degree t cubature rule for X is a finite collection of
points D ⊂ Rn and a weight function w : D → R satisfying∑︁

x∈D
w(x)g(x) =

∫︁
X
g(x)d𝜇(x)

for any polynomial g ∈ R[x1, . . . , xn] of degree t or less.

Definition (Design)

A t-design for X is a degree t cubature rule (D,w) satisfying D ⊂ X and Im(w) ⊂ (0,∞).
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Why are designs interesting?

X = Sd X = U(d) X = CPd−1

spherical design unitary design qudit design

Numerical integration X ⊂ Rn e.g. Stroud 1971

Error correction X = Sd e.g. Conway, Sloane 1999

Randomized benchmarking X = U(d) e.g. Dankert, Cleve, Emerson, Livine 2006

State tomography X = CPd−1 e.g. Scott 2006

State distinction X = CPd−1 e.g. Ambainis, Emerson 2007

Shadow tomography X = CPd−1 e.g. Huang, Kueng, Preskill 2020
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What is a quantum state design?

Complex-projective space CPd−1 ∼= S2d−1/U(1) is the set of all pure quantum states in
Cd identified up to proportionality

Definition (Complex-projective t-design)

Let X ⊂ CPd−1 and w : X → (0,∞). The pair (X ,w) is a complex-projective t-design if∑︁
𝜑∈X

w(𝜑)f (𝜑) =

∫︁
CPd−1

f (𝜓) d𝜓

for any polynomial f (𝜓) of degree t or less in the amplitudes and conjugate amplitudes of |𝜓⟩.
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Generalization to arbitrary measure space

Let X ⊂ CPd−1 and w : X → (0,∞). The
pair (X ,w) is a complex-projective
t-design if∑︁

𝜑∈X
w(𝜑)f (𝜑) =

∫︁
CPd−1

f (𝜓)d𝜓

for any polynomial f (𝜓) of degree t or less
in the amplitudes and conjugate
amplitudes of |𝜓⟩.

Let X ⊂ CPd−1. The measure space
(X ,Σ, 𝜇) is a complex-projective t-design
if ∫︁

X
f (𝜑)d𝜇(𝜑) =

∫︁
CPd−1

f (𝜓) d𝜓

for any polynomial f (𝜓) of degree t or less
in the amplitudes and conjugate
amplitudes of |𝜓⟩.
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Simplex, torus, and complex-projective designs

Consider the parameterization |p, 𝜑⟩ :=
∑︀d−1

n=0

√
pne

i𝜑n |n⟩ for p ∈ Δd−1 and
𝜑 ∈ (R/2𝜋Z)d−1 ∼= T d

Consider the projection 𝜋 : CPd−1 → Δd−1, 𝜋(𝜓) =
(︁
|⟨0|𝜓⟩|2 , . . . , |⟨d − 1|𝜓⟩|2

)︁

Fact

Volume integration over CPd−1 is equivalent to volume integration over Δd−1 × T d−1

Theorem (Informal)

If X is a CPd−1 t-design, then 𝜋(X ) is a Δd−1 t-design

Theorem (Informal)

If P ⊂ Δd−1 and S ⊂ T d−1 are simplex and torus t-designs, then P × S is a CPd−1 t-design
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A useful characterization of state designs

Lemma

Let X ⊂ CPd−1. The measure space (X ,Σ, 𝜇) is a complex-projective t-design iff∫︁
X
(|𝜑⟩⟨𝜑|)⊗t d𝜇(𝜑) =

∫︁
CPd−1

(|𝜓⟩⟨𝜓|)⊗t d𝜓

=
Π
(d)
t

TrΠ
(d)
t

Example (Projector onto the symmetric subspace)

Π
(d)
1 = I

Π
(d)
2 = 1

2 (I⊗ I+ SWAP)
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