

Projective toric designs, difference sets, and quantum state designs

Joseph T. Iosue

[arXiv:2311.13479](https://arxiv.org/abs/2311.13479)

CodEx Seminar: 13 February 2024

Joint work with wonderful collaborators

T. C. Mooney

Adam Ehrenberg

Prof. Alexey Gorshkov

Overview

- 1 Introduction
- 2 Complete sets of mutually unbiased bases
- 3 Bound on minimal projective toric designs
- 4 Projective toric designs from difference sets
- 5 Almost minimal quantum state designs
- 6 Outlook

What is a t -design?

Definition

Given a measure space (M, μ) and a set of polynomials on M , a t -design on M is a measure space $(X \subset M, \nu)$ satisfying $\int_X f \, d\nu = \int_M f \, d\mu$ for all polynomials f of degree $f \leq t$.

What is a t -design?

Definition

Given a measure space (M, μ) and a set of polynomials on M , a t -design on M is a measure space $(X \subset M, \nu)$ satisfying $\int_X f d\nu = \int_M f d\mu$ for all polynomials f of degree $f \leq t$.

$M = S^d$	Spherical design	$M = \mathbb{U}(d)$	Unitary design
$M = \Omega_d$	Complex spherical design	$M = \mathbb{P}\mathbb{U}(d)$	Projective unitary design
$M = \mathbb{C}\mathbb{P}^d$	Quantum state design	$M = \Delta^d$	Simplex design
$M = T^d$	Toric design	$M = \mathbb{P}(T^d)$	Projective toric design
$M = S(\mathbb{R})'$	Rigged (continuous variable) quantum state design		

What is a t -design?

Definition

Given a measure space (M, μ) and a set of polynomials on M , a t -design on M is a measure space $(X \subset M, \nu)$ satisfying $\int_X f d\nu = \int_M f d\mu$ for all polynomials f of degree $f \leq t$.

$M = S^d$	Spherical design	$M = \mathbb{U}(d)$	Unitary design
$M = \Omega_d$	Complex spherical design	$M = \mathbb{P}\mathbb{U}(d)$	Projective unitary design
$M = \mathbb{C}\mathbb{P}^d$	Quantum state design	$M = \Delta^d$	Simplex design
$M = T^d$	Toric design	$M = \mathbb{P}(T^d)$	Projective toric design
$M = S(\mathbb{R})'$	Rigged (continuous variable) quantum state design		

What is a t -design?

Definition

Given a measure space (M, μ) and a set of polynomials on M , a t -design on M is a measure space $(X \subset M, \nu)$ satisfying $\int_X f d\nu = \int_M f d\mu$ for all polynomials f of degree $f \leq t$.

$M = S^d$	Spherical design	$M = \mathbb{U}(d)$	Unitary design
$M = \Omega_d$	Complex spherical design	$M = \mathbb{P}\mathbb{U}(d)$	Projective unitary design
$M = \mathbb{C}\mathbb{P}^d$	Quantum state design	$M = \Delta^d$	Simplex design
$M = T^d$	Toric design	$M = P(T^d)$	Projective toric design
$M = S(\mathbb{R})'$	Rigged (continuous variable) quantum state design		

What is a t -design?

Definition

Given a measure space (M, μ) and a set of polynomials on M , a t -design on M is a measure space $(X \subset M, \nu)$ satisfying $\int_X f d\nu = \int_M f d\mu$ for all polynomials f of degree $f \leq t$.

$M = S^d$	Spherical design	$M = \mathbb{U}(d)$	Unitary design
$M = \Omega_d$	Complex spherical design	$M = \mathbb{P}\mathbb{U}(d)$	Projective unitary design
$M = \mathbb{C}\mathbb{P}^d$	Quantum state design	$M = \Delta^d$	Simplex design
$M = T^d$	Toric design	$M = \mathbb{P}(T^d)$	Projective toric design
$M = S(\mathbb{R})'$	Rigged (continuous variable) quantum state design		

What is a toric design?

Definition

Let $T = \mathbb{R}/2\pi\mathbb{Z}$. A T^n *t-design* (or trigonometric cubature rule of dimension n and degree t) is a measure space $(X \subset T^n, \nu)$ such that

$$\int_X \exp\left(i \sum_{j=1}^n \alpha_j \phi_j\right) d\nu(\phi) = \int_{T^n} \exp\left(i \sum_{j=1}^n \alpha_j \phi_j\right) d\mu_n(\phi)$$

for all $\alpha \in \mathbb{Z}^n$ satisfying $\sum_{j=1}^n |\alpha_j| \leq t$, where μ_n is T^n 's unit-normalized Haar measure.

A T^n design is the same as a design on the diagonal unitary group $T(\mathrm{U}(n))$.

General theme for projective designs

(Q) What makes a **projective** [complex spherical, toric, unitary] design different from a [complex spherical, toric, unitary] design? **(A)** **The polynomials**

A projective complex spherical design is a complex-projective design

General theme for projective designs

(Q) What makes a **projective** [complex spherical, toric, unitary] design different from a [complex spherical, toric, unitary] design? **(A)** **The polynomials**

Example

On T^2 , $\exp(i(\phi_1 + \phi_2))$ is a degree 2 monomial. But it does *not* descend to a well-defined function on $P(T^2) = T^2/\mathbb{U}(1)$.

A projective complex spherical design is a complex-projective design

What is a projective toric design?

Definition

Let $P(T^n) = T^n/\mathrm{U}(1)$. A $P(T^n)$ t -design is a measure space $(X \subset P(T^n), \nu)$ such that for all $a, b \in \{1, \dots, n\}^t$,

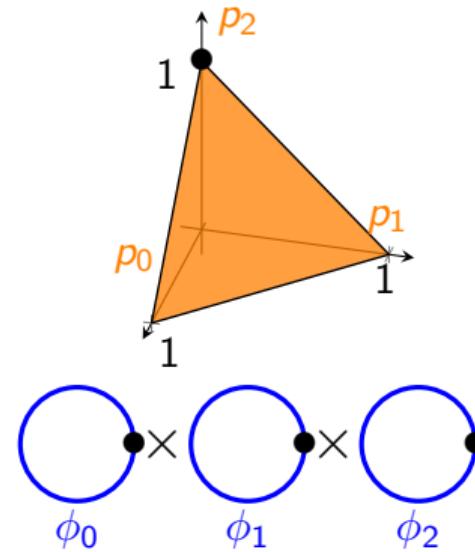
$$\int_X \exp\left(i \sum_{j=1}^t (\phi_{a_j} - \phi_{b_j})\right) d\nu(\phi) = \int_{T^n} \exp\left(i \sum_{j=1}^t (\phi_{a_j} - \phi_{b_j})\right) d\mu_{n-1}(\phi)$$

where we denote $P(T^n)$'s unit-normalized Haar measure by μ_{n-1} since $P(T^n) \cong T^{n-1}$.

A $P(T^n)$ design is the same as a design on the maximal torus of the projective unitary group $T(\mathrm{PU}(n))$.

Relationship to complex spherical designs

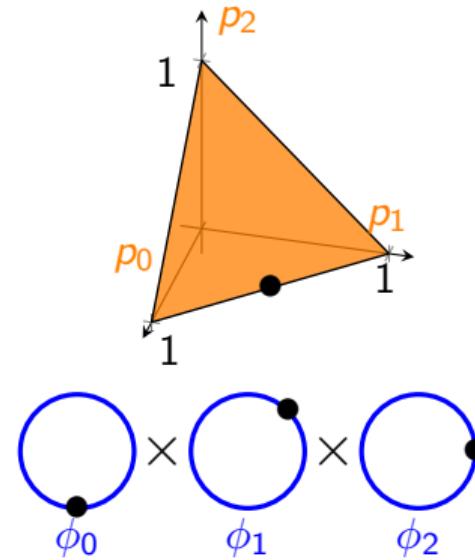
- Consider the parameterization $|p, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$ of unit vectors in \mathbb{C}^d



$$\sqrt{0} e^{i(0)} |0\rangle + \sqrt{0} e^{i(0)} |1\rangle + \sqrt{1} e^{i(0)} |2\rangle$$

Relationship to complex spherical designs

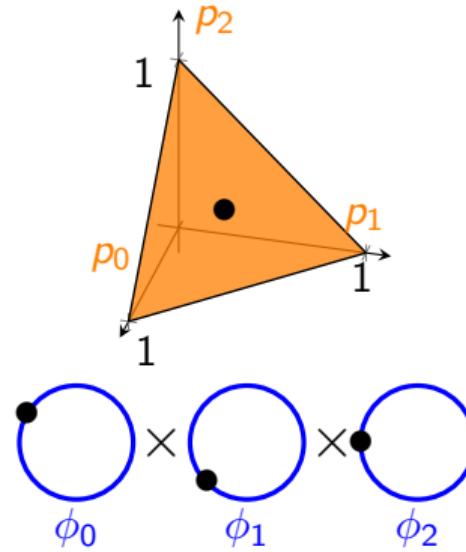
- Consider the parameterization $|\mathbf{p}, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$ of unit vectors in \mathbb{C}^d



$$\sqrt{1/2} e^{i(-\pi/2)} |0\rangle + \sqrt{1/2} e^{i(\pi/4)} |1\rangle + \sqrt{0} e^{i(0)} |2\rangle$$

Relationship to complex spherical designs

- Consider the parameterization $|p, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$ of unit vectors in \mathbb{C}^d



$$\sqrt{1/3} e^{i(5\pi/6)} |0\rangle + \sqrt{1/3} e^{i(-3\pi/4)} |1\rangle + \sqrt{1/3} e^{i(\pi)} |2\rangle$$

Relationship to complex spherical designs

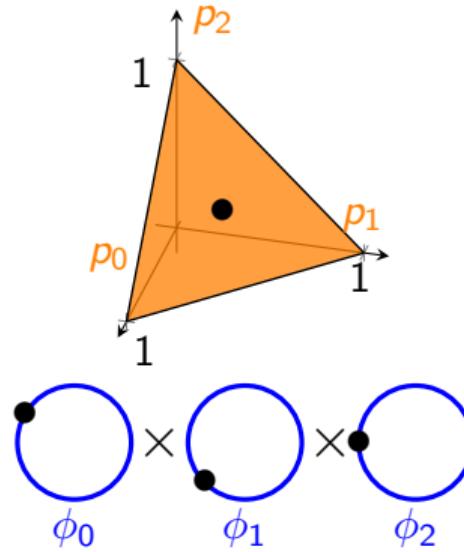
- Consider the parameterization $|\mathbf{p}, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$ of unit vectors in \mathbb{C}^d

Theorem

A simplex t -design and a toric t -design combine to yield a complex spherical t -design.

Theorem

A simplex t -design and a **projective** toric t -design combine to yield a complex **projective** t -design.



$$\sqrt{1/3} e^{i(5\pi/6)} |0\rangle + \sqrt{1/3} e^{i(-3\pi/4)} |1\rangle + \sqrt{1/3} e^{i(\pi)} |2\rangle$$

Relationship to quantum state designs

Fact

Volume integration over Ω_d is equivalent to volume integration over $\Delta^{d-1} \times T^d$

Fact

Volume integration over $\mathbb{CP}^{d-1} = \Omega_d/U(1)$ is equivalent to volume integration over $\Delta^{d-1} \times P(T^d)$

- Simplex design \times toric design yields complex spherical design
- Simplex design \times projective toric design yields complex projective (quantum state) design

Relationship to quantum state designs

Fact

Volume integration over Ω_d is equivalent to volume integration over $\Delta^{d-1} \times T^d$

Fact

Volume integration over $\mathbb{CP}^{d-1} = \Omega_d/U(1)$ is equivalent to volume integration over $\Delta^{d-1} \times P(T^d)$

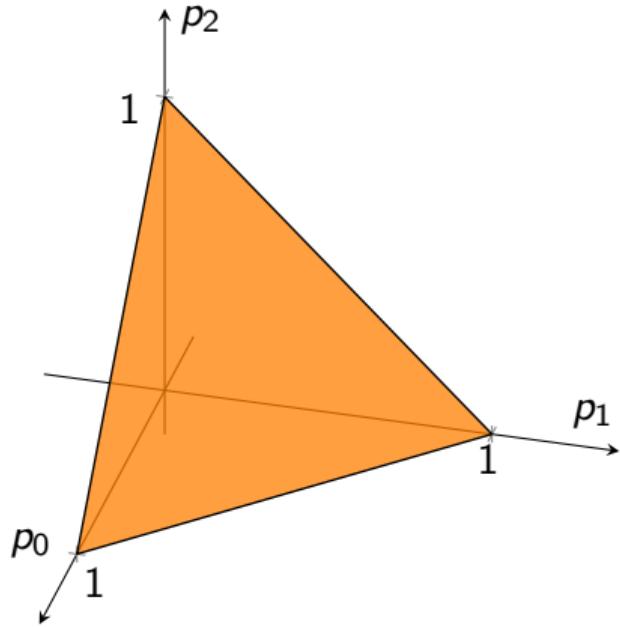
- Simplex design \times toric design yields complex spherical design
- Simplex design \times projective toric design yields complex projective (quantum state) design
- With a suitable redefinition of a “design” on an infinite simplex, one can concatenate such a design with a design on $P(T^\infty)$ to yield a rigged continuous-variable quantum state design (Iosue et al. 2024)

Simplex designs

Definition

The simplex Δ^{d-1} is the set of all probability distributions on d elements

$$\Delta^{d-1} = \left\{ p = (p_0, \dots, p_{d-1}) \in [0, 1]^d \mid \sum_{n=0}^{d-1} p_n = 1 \right\}$$



Simplex designs

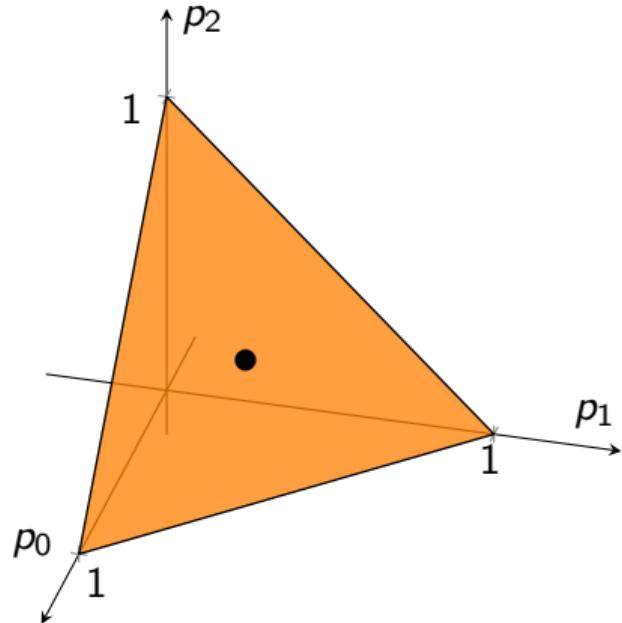
Definition

The simplex Δ^{d-1} is the set of all probability distributions on d elements

$$\Delta^{d-1} = \left\{ p = (p_0, \dots, p_{d-1}) \in [0, 1]^d \mid \sum_{n=0}^{d-1} p_n = 1 \right\}$$

Example (Simplex 2-design)

The centroid



Simplex designs

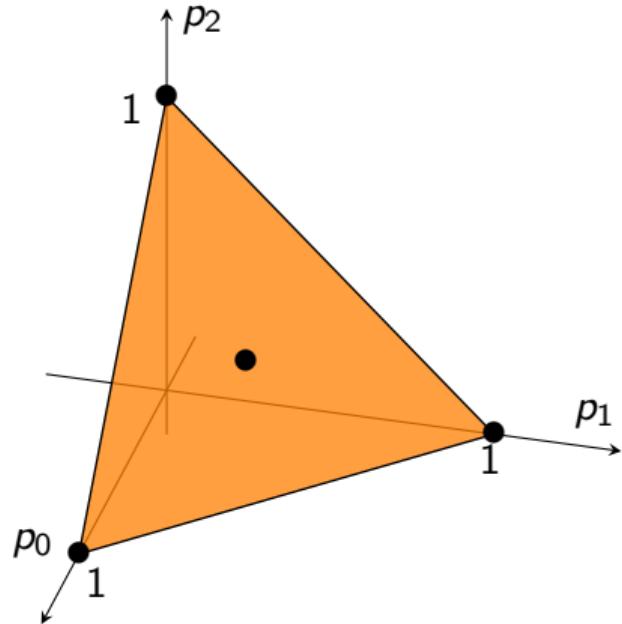
Definition

The simplex Δ^{d-1} is the set of all probability distributions on d elements

$$\Delta^{d-1} = \left\{ p = (p_0, \dots, p_{d-1}) \in [0, 1]^d \mid \sum_{n=0}^{d-1} p_n = 1 \right\}$$

Example (Simplex 2-design)

The centroid and the extremal points of the simplex form a 2-design



Overview

- 1 Introduction
- 2 Complete sets of mutually unbiased bases
- 3 Bound on minimal projective toric designs
- 4 Projective toric designs from difference sets
- 5 Almost minimal quantum state designs
- 6 Outlook

Complete set of mutually unbiased bases (CS-MUBs)

Definition

The orthonormal bases B_0, \dots, B_d of \mathbb{C}^d form a CS-MUBs if $|\langle \psi | \phi \rangle|^2 = 1/d$ for all $\psi \in B_i$ and $\phi \in B_j$ when $i \neq j$.

Complete set of mutually unbiased bases (CS-MUBs)

Definition

The orthonormal bases B_0, \dots, B_d of \mathbb{C}^d form a CS-MUBs if $|\langle \psi | \phi \rangle|^2 = 1/d$ for all $\psi \in B_i$ and $\phi \in B_j$ when $i \neq j$.

A collection of phases

$\{\theta_k^{i,j} \mid i, j, k \in \{1, \dots, d\}\}$ forms a CS-MUBs if

① (Orthonormal)

$\forall i, j, k : \sum_{\ell=1}^d e^{i(\theta_{\ell}^{i,j} - \theta_{\ell}^{i,k})} = d\delta_{jk}$, and

② (Mutually unbiased)

$\forall i \neq j, k, m : \left| \sum_{\ell=1}^n e^{i(\theta_{\ell}^{i,k} - \theta_{\ell}^{j,m})} \right|^2 = d$.

Each $\theta^{i,j} \in T^d$

Complete set of mutually unbiased bases (CS-MUBs)

Definition

The orthonormal bases B_0, \dots, B_d of \mathbb{C}^d form a CS-MUBs if $|\langle \psi | \phi \rangle|^2 = 1/d$ for all $\psi \in B_i$ and $\phi \in B_j$ when $i \neq j$.

A collection of phases

$\{\theta_k^{i,j} \mid i, j, k \in \{1, \dots, d\}\}$ forms a CS-MUBs if

① (Orthonormal)

$\forall i, j, k : \sum_{\ell=1}^d e^{i(\theta_{\ell}^{i,j} - \theta_{\ell}^{i,k})} = d\delta_{jk}$, and

② (Mutually unbiased)

$\forall i \neq j, k, m : \left| \sum_{\ell=1}^d e^{i(\theta_{\ell}^{i,k} - \theta_{\ell}^{j,m})} \right|^2 = d$.

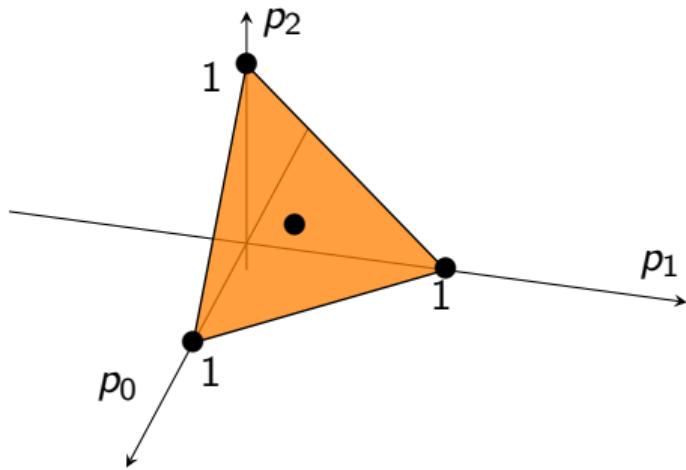
Each $\theta^{i,j} \in T^d$, but overall phase does not matter, so really $\theta^{i,j} \in P(T^d)$

CS-MUBs and projective toric 2-designs

Theorem

A collection $\Theta = \{\theta^{i,j} \mid i, j \in \{1, \dots, d\}\} \subset P(T^d)$ forms a CS-MUBs iff

- ① (Orthonormal) $\forall i, j, k : \sum_{\ell=1}^d e^{i(\theta_{\ell}^{i,j} - \theta_{\ell}^{i,k})} = d\delta_{jk}$, and
- ② Θ is a projective toric 2-design.



CS-MUB example

Let $d = p$ be a prime. Then $\theta_k^{i,j} = \frac{2\pi}{p}(jk + ik^2)$ is a projective toric 2-design and satisfies orthonormality.

\Updownarrow concatenate with simplex design

B_0, \dots, B_d forms a CS-MUBs for \mathbb{C}^p , where $B_0 = \{|j\rangle \mid j \in \{1, \dots, p\}\}$ and
 $B_i = \left\{ |\psi^{i,j}\rangle = \frac{1}{\sqrt{p}} \sum_{k=1}^d e^{i\theta_k^{i,j}} |k\rangle \mid j \in \{1, \dots, p\} \right\}$

This is the canonical example of a CS-MUBs from (Wootters and Fields 1989)

Infinite dimensions

$\left\{ \theta^{\varphi, \vartheta} = (\vartheta k + \varphi k^2)_{k \in \mathbb{N}} \mid \vartheta, \varphi \in [0, 2\pi) \right\}$ is a $P(T^\infty)$ 2-design. That is,

$$\frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} e^{i(\theta_a^{\varphi, \vartheta} + \theta_b^{\varphi, \vartheta} - \theta_c^{\varphi, \vartheta} - \theta_d^{\varphi, \vartheta})} d\vartheta d\varphi = \int_{P(T^\infty)} e^{i(\phi_a + \phi_b - \phi_c - \phi_d)} d\mu_\infty$$

\Updownarrow concatenate with simplex “design”

$\{|j\rangle \mid j \in \mathbb{N}\} \cup \left\{ \sum_{k=1}^{\infty} e^{i(\vartheta k + \varphi k^2)} |k\rangle \mid \vartheta, \varphi \in [0, 2\pi) \right\}$ forms a design on the space of tempered distributions $S(\mathbb{R})'$ (rigged continuous-variable quantum state 2-design)

Overview

- 1 Introduction
- 2 Complete sets of mutually unbiased bases
- 3 Bound on minimal projective toric designs**
- 4 Projective toric designs from difference sets
- 5 Almost minimal quantum state designs
- 6 Outlook

Root lattices and crystal ball numbers

- Consider the root lattice A_{n-1} of $T(\mathrm{PU}(n))$
- The roots of A_{n-1} are $\mathcal{R} = \{\mathbf{e}_i - \mathbf{e}_j \mid i, j \in \{1, \dots, n\}\}$
- The set of all points on A_{n-1} that are at most a distance s away from the origin is $s\mathcal{R}$
- The *crystal ball numbers* (OEIS:A108625) for A_{n-1} are $G_{n-1}(s) := |s\mathcal{R}|$

Theorem (Conway and Sloane 1997)

$$G_{n-1}(s) = {}_3F_2(1-n, -s, n; 1, 1; 1)$$

Minimal projective toric designs

- Define $P_s^{(n)} := s\mathcal{R} = \{\mathbf{q} - \mathbf{r} \mid \mathbf{q}, \mathbf{r} \in \mathbb{N}_0^n, \sum_{i=1}^n q_i = \sum_{i=1}^n r_i = s\}$
- $G_{n-1}(s) = |P_s^{(n)}|$
- An element $\mathbf{q} - \mathbf{r} \in P_s^{(n)}$ corresponds to a monomial $e^{i \sum_{j=1}^n (q_j - r_j) \phi_j}$ of degree $\leq s$ on $P(T^n)$

Minimal projective toric designs

- Define $P_s^{(n)} := s\mathcal{R} = \{\mathbf{q} - \mathbf{r} \mid \mathbf{q}, \mathbf{r} \in \mathbb{N}_0^n, \sum_{i=1}^n q_i = \sum_{i=1}^n r_i = s\}$
- $G_{n-1}(s) = |P_s^{(n)}|$
- An element $\mathbf{q} - \mathbf{r} \in P_s^{(n)}$ corresponds to a monomial $e^{i \sum_{j=1}^n (q_j - r_j) \phi_j}$ of degree $\leq s$ on $P(T^n)$

Theorem

Let $n \in \mathbb{N}$ and X a discrete, finite $P(T^n)$ t -design.

- $|X| \geq G_{n-1}(\lfloor t/2 \rfloor)$.
- If t is even and X saturates this bound, then X is uniformly weighted.

Overview

- 1 Introduction
- 2 Complete sets of mutually unbiased bases
- 3 Bound on minimal projective toric designs
- 4 Projective toric designs from difference sets
- 5 Almost minimal quantum state designs
- 6 Outlook

Group designs

- Let X be a $P(T^\infty)$ t -design and $X \cong T$
- Then $X = zT = \{(\theta z_1, \theta z_2, \dots) \mid \theta \in [0, 2\pi)\}$ for some $z \in \mathbb{Z}^\infty$
- X is a t -design iff z satisfies (B_t difference set)

$$\left(\sum_{j=1}^t z_{a_j} = \sum_{j=1}^t z_{b_j} \right) \iff (\{\{a_j \mid j \in \{1, \dots, t\}\}\} = \{\{b_j \mid j \in \{1, \dots, t\}\}\})$$

Group designs

- Let X be a $P(T^\infty)$ t -design and $X \cong T$
- Then $X = zT = \{(\theta z_1, \theta z_2, \dots) \mid \theta \in [0, 2\pi)\}$ for some $z \in \mathbb{Z}^\infty$
- X is a t -design iff z satisfies (B_t difference set)

$$\left(\sum_{j=1}^t z_{a_j} = \sum_{j=1}^t z_{b_j} \right) \iff (\{\{a_j \mid j \in \{1, \dots, t\}\}\} = \{\{b_j \mid j \in \{1, \dots, t\}\}\})$$

Example

Let $z \in \mathbb{Z}^\infty$ be $z_a = t^a$. Then the group $\{(z_a \theta)_{a \in \mathbb{N}} \mid \theta \in [0, 2\pi)\}$ with its Haar measure is a $P(T^\infty)$ t -design.

Finite group designs

Definition

$z \in \mathbb{Z}_m^n$ is a $B_t \bmod m$ set of size n if the sum $\bmod m$ of any t element of z is unique.

Finite group designs

Definition

$z \in \mathbb{Z}_m^n$ is a $B_t \bmod m$ set of size n if the sum $\bmod m$ of any t element of z is unique.

Theorem

Group $P(T^n)$ t -designs isomorphic to the cyclic group \mathbb{Z}_m are in one-to-one correspondence with $B_t \bmod m$ sets of size n .

Finite group designs

Definition

$z \in \mathbb{Z}_m^n$ is a $B_t \bmod m$ set of size n if the sum $\bmod m$ of any t element of z is unique.

Theorem

Group $P(T^n)$ t -designs isomorphic to the cyclic group \mathbb{Z}_m are in one-to-one correspondence with $B_t \bmod m$ sets of size n .

Corollary

Any $B_t \bmod m$ set must have size n satisfying $m \geq G_{n-1}(\lfloor t/2 \rfloor)$.

Singer sets

- Studying finite fields, Singer constructed $B_t \bmod \frac{(n-1)^{t+1}-1}{n-2}$ sets of size n whenever $n-1$ is a prime power.
- Hence, via these Singer sets, we have an explicit construction of $P(T^n)$ t -designs of size $\frac{(n'-1)^{t+1}-1}{n'-2}$ for all n and t , where n' is the smallest integer $\geq n$ such that $n'-1$ is a prime power.

Singer sets

- Studying finite fields, Singer constructed $B_t \bmod \frac{(n-1)^{t+1}-1}{n-2}$ sets of size n whenever $n-1$ is a prime power.
- Hence, via these Singer sets, we have an explicit construction of $P(T^n)$ t -designs of size $\frac{(n'-1)^{t+1}-1}{n'-2}$ for all n and t , where n' is the smallest integer $\geq n$ such that $n'-1$ is a prime power.
- Twirling over an overall factor of a $U(1)$ $(2t)$ -design, we can turn a $P(T^n)$ t -design into a T^n $(2t)$ -design.
- This therefore gives explicit T^n $(2t)$ -designs of size $(2t+1) \times \frac{(n'-1)^{t+1}-1}{n'-2}$ for all t and n

Sidon sets

- When $t = 2$, a $B_t \bmod m$ set of size n is a *Sidon set of size $n \bmod m$*

Lower bound

$$G_{n-1}(\lfloor t/2 \rfloor) = n(n-1) + 1$$

Singer construction

$$\frac{(n'-1)^{t+1} - 1}{n'-2} = n'(n' - 1) + 1$$

Sidon sets

- When $t = 2$, a $B_t \bmod m$ set of size n is a *Sidon set of size $n \bmod m$*

Lower bound

$$G_{n-1}(\lfloor t/2 \rfloor) = n(n-1) + 1$$

Singer construction

$$\frac{(n'-1)^{t+1}-1}{n'-2} = n'(n'-1) + 1$$

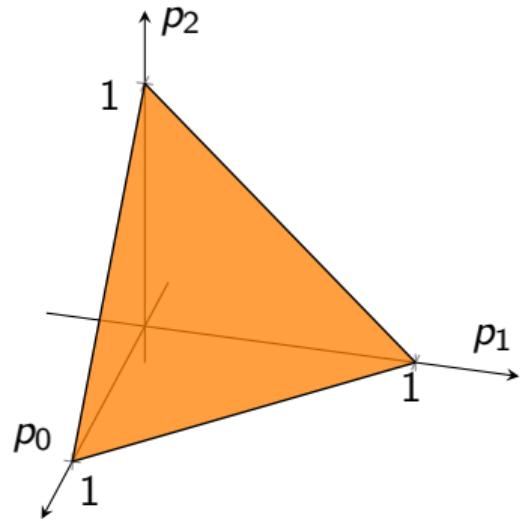
The Singer construction therefore yields *minimal $P(T^n)$ 2-designs* whenever $n - 1$ is a prime power

Overview

- 1 Introduction
- 2 Complete sets of mutually unbiased bases
- 3 Bound on minimal projective toric designs
- 4 Projective toric designs from difference sets
- 5 Almost minimal quantum state designs
- 6 Outlook

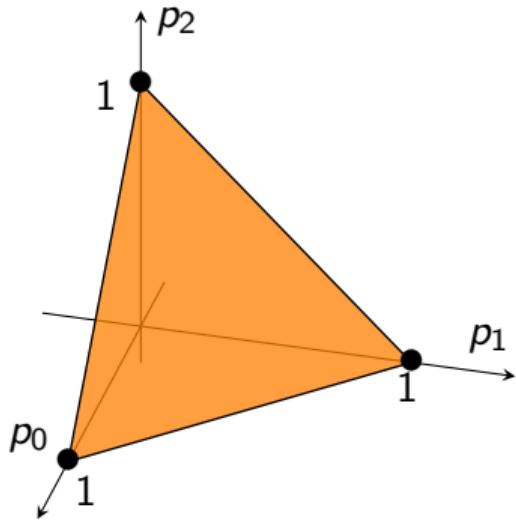
Almost minimal quantum state 2-designs

- Recall: simplex design \times projective toric design yields quantum state design



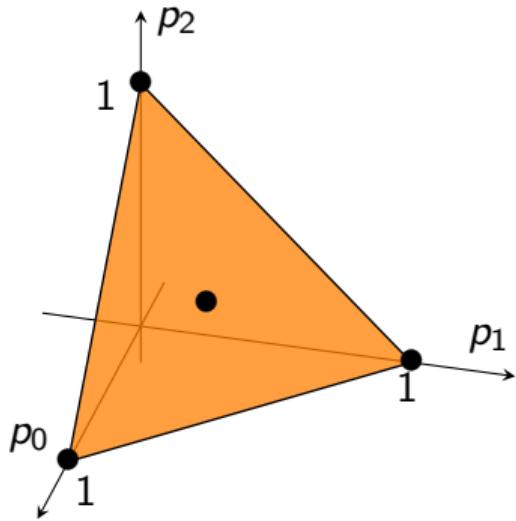
Almost minimal quantum state 2-designs

- Recall: simplex design \times projective toric design yields quantum state design
- Simplex extremal points correspond to basis states $\{|1\rangle, \dots, |d\rangle\} \subset \mathbb{C}^d$



Almost minimal quantum state 2-designs

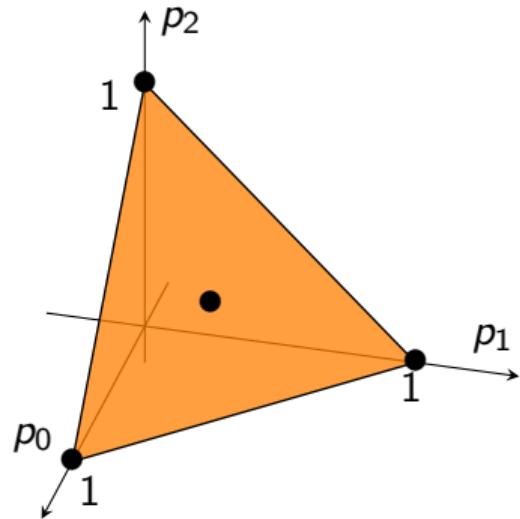
- Recall: simplex design \times projective toric design yields quantum state design
- Simplex extremal points correspond to basis states $\{|1\rangle, \dots, |d\rangle\} \subset \mathbb{C}^d$
- Simplex centroid becomes $\frac{1}{\sqrt{d}} \sum_{k=1}^d e^{i\phi_k} |k\rangle$, where the phases $\phi \in P(T^n)$ come from a design



Almost minimal quantum state 2-designs

- Recall: simplex design \times projective toric design yields quantum state design
- Simplex extremal points correspond to basis states $\{|1\rangle, \dots, |d\rangle\} \subset \mathbb{C}^d$
- Simplex centroid becomes $\frac{1}{\sqrt{d}} \sum_{k=1}^d e^{i\phi_k} |k\rangle$, where the phases $\phi \in P(T^n)$ come from a design

Singer's Sidon sets yield quantum state 2-designs of size $d^2 + 1$ whenever $d + 1$ is a prime power



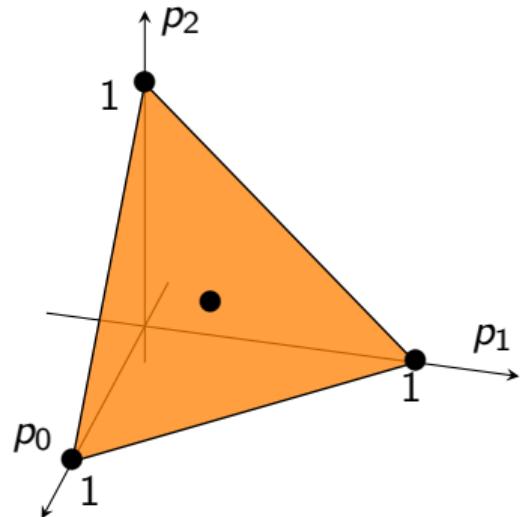
These 2-designs were first constructed in (Bodmann and Haas 2016) via a totally different method

Almost minimal quantum state 2-designs

- Recall: simplex design \times projective toric design yields quantum state design
- Simplex extremal points correspond to basis states $\{|1\rangle, \dots, |d\rangle\} \subset \mathbb{C}^d$
- Simplex centroid becomes $\frac{1}{\sqrt{d}} \sum_{k=1}^d e^{i\phi_k} |k\rangle$, where the phases $\phi \in P(T^n)$ come from a design

Singer's Sidon sets yield quantum state 2-designs of size $d^2 + 1$ whenever $d + 1$ is a prime power

- Recall that minimal quantum state 2-designs (SIC-POVMs) are of size d^2 (though it is still unknown if SIC-POVMs always exist)



These 2-designs were first constructed in (Bodmann and Haas 2016) via a totally different method

Overview

- 1 Introduction
- 2 Complete sets of mutually unbiased bases
- 3 Bound on minimal projective toric designs
- 4 Projective toric designs from difference sets
- 5 Almost minimal quantum state designs
- 6 Outlook

Summary and open questions

- We studied projective toric designs and their relationship to many other mathematical objects
- We constructed infinite families of toric and projective toric t -designs

Summary and open questions

- We studied projective toric designs and their relationship to many other mathematical objects
- We constructed infinite families of toric and projective toric t -designs
- Is our lower bound on the size of $P(T^n)$ t -designs tight? (Conjecture: when t is even)

Summary and open questions

- We studied projective toric designs and their relationship to many other mathematical objects
- We constructed infinite families of toric and projective toric t -designs
- Is our lower bound on the size of $P(T^n)$ t -designs tight? (Conjecture: when t is even)
- Must minimal designs be group designs?

Summary and open questions

- We studied projective toric designs and their relationship to many other mathematical objects
- We constructed infinite families of toric and projective toric t -designs
- Is our lower bound on the size of $P(T^n)$ t -designs tight? (Conjecture: when t is even)
- Must minimal designs be group designs?
- Connection to affine/projective planes via relationship to CS-MUBs?

Summary and open questions

- We studied projective toric designs and their relationship to many other mathematical objects
- We constructed infinite families of toric and projective toric t -designs
- Is our lower bound on the size of $P(T^n)$ t -designs tight? (Conjecture: when t is even)
- Must minimal designs be group designs?
- Connection to affine/projective planes via relationship to CS-MUBs?
- Nice simplex t -designs to generate quantum state designs via our infinite family of projective toric designs?

Summary and open questions

- We studied projective toric designs and their relationship to many other mathematical objects
- We constructed infinite families of toric and projective toric t -designs
- Is our lower bound on the size of $P(T^n)$ t -designs tight? (Conjecture: when t is even)
- Must minimal designs be group designs?
- Connection to affine/projective planes via relationship to CS-MUBs?
- Nice simplex t -designs to generate quantum state designs via our infinite family of projective toric designs?
- Concatenating designs yields a design on (effectively) the cartesian product; what about twisted products?

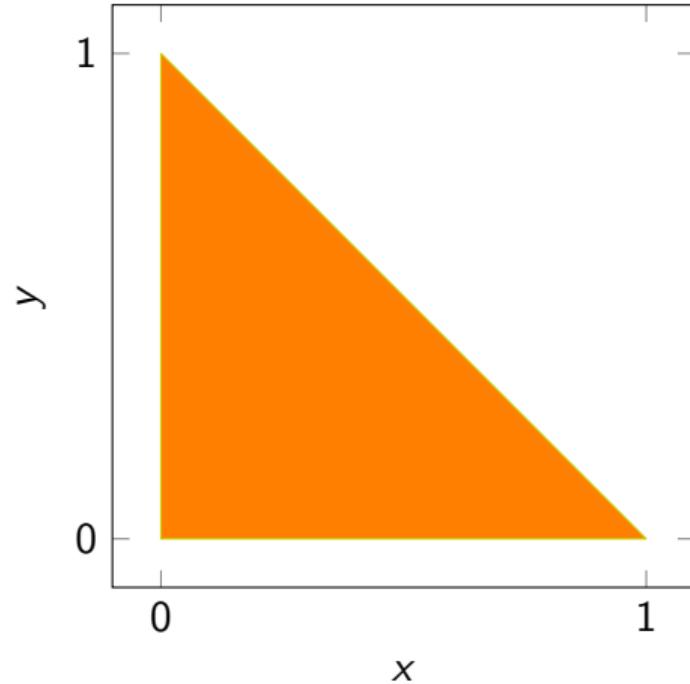
References

- Bodmann, Bernhard G. and John Haas (Sept. 2016). "Achieving the orthoplex bound and constructing weighted complex projective 2-designs with Singer sets". In: *Linear Algebra and its Applications* 511, pp. 54–71.
- Conway, J. H. and N. J. A. Sloane (Nov. 1997). "Low-dimensional lattices. VII. Coordination sequences". In: *Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences* 453.1966, pp. 2369–2389.
- Iosue, Joseph T. et al. (Nov. 2023). "Projective toric designs, difference sets, and quantum state designs". In: *arXiv:2311.13479*.
- Iosue, Joseph T. et al. (Feb. 2024). "Continuous-Variable Quantum State Designs: Theory and Applications". In: *Phys. Rev. X* 14, p. 011013.
- Kuperberg, Greg (May 2006). "Numerical Cubature from Archimedes' Hat-box Theorem". In: *SIAM Journal on Numerical Analysis* 44.3, pp. 908–935.
- Tao, Terence and Van H Vu (2006). *Additive combinatorics*. Vol. 105. Cambridge Studies in Advanced Mathematics. Cambridge University Press.
- Wootters, William K and Brian D Fields (Sept. 1989). "Optimal state-determination by mutually unbiased measurements". In: *Annals of Physics* 191.2, pp. 363–381.

Additional slides

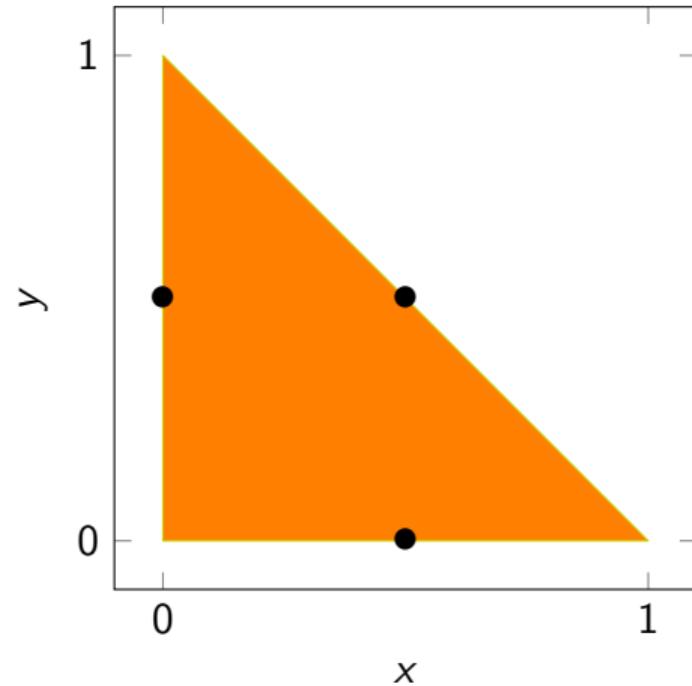
What is a t -design?

- Let $X \subset \mathbb{R}^2$ be the triangle with vertices $(0, 0), (1, 0), (0, 1)$



What is a t -design?

- Let $X \subset \mathbb{R}^2$ be the triangle with vertices $(0, 0), (1, 0), (0, 1)$
- Let $\mathcal{D} = \{(0, 1/2), (1/2, 0), (1/2, 1/2)\} \subset X$



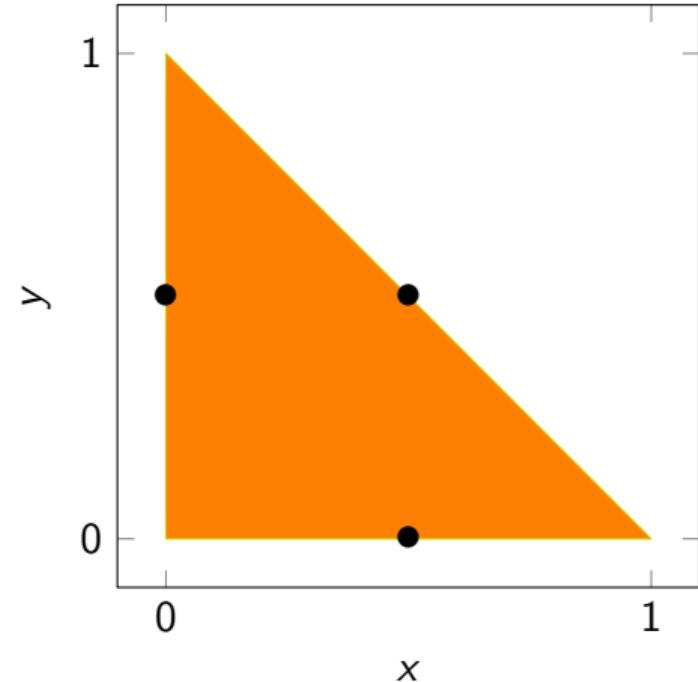
What is a t -design?

- Let $X \subset \mathbb{R}^2$ be the triangle with vertices $(0, 0), (1, 0), (0, 1)$
- Let $\mathcal{D} = \{(0, 1/2), (1/2, 0), (1/2, 1/2)\} \subset X$

\mathcal{D} is a *2-design* for X

If $g(x, y) = ax^2 + by^2 + cxy + dx + ey + f$, then

$$\frac{1}{6} \sum_{(x,y) \in \mathcal{D}} g(x, y) = \int_X g(x, y) \, dx \, dy$$



Fubini-Study measure

Fact

Volume integration over \mathbb{CP}^{d-1} is equivalent to volume integration over $\Delta^{d-1} \times T^{d-1}$

- Consider $|p, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$ for $p \in \Delta^{d-1}$ and $\phi \in \{0\} \times (\mathbb{R}/2\pi\mathbb{Z})^{d-1} \cong T^{d-1}$
- Consider $|\alpha\rangle := \sum_{n=0}^{d-1} \alpha_n |n\rangle$ for $\alpha_n \in \mathbb{C}$, $\alpha \in S^{2d-1}$
- The natural measure on S^{2d-1} is $\prod_n d^2\alpha_n$
- Under $\alpha_n \mapsto \sqrt{p_n} e^{i\phi_n}$, the measure becomes

$$d^2\alpha_n \mapsto dp_n d\phi_n \cdot \text{abs det} \begin{pmatrix} \frac{e^{i\phi_n}}{2\sqrt{p_n}} & i\sqrt{p_n} e^{i\phi_n} \\ \frac{e^{-i\phi_n}}{2\sqrt{p_n}} & -i\sqrt{p_n} e^{-i\phi_n} \end{pmatrix} = dp_n d\phi_n$$

What is a design?

Definition (Cubature)

Let $X \subset \mathbb{R}^n$ and $d\mu$ a measure on X . A **degree t cubature rule** for X is a finite collection of points $D \subset \mathbb{R}^n$ and a weight function $w: D \rightarrow \mathbb{R}$ satisfying

$$\sum_{x \in D} w(x)g(x) = \int_X g(x) d\mu(x)$$

for any polynomial $g \in \mathbb{R}[x_1, \dots, x_n]$ of degree t or less.

What is a design?

Definition (Cubature)

Let $X \subset \mathbb{R}^n$ and $d\mu$ a measure on X . A **degree t cubature rule** for X is a finite collection of points $D \subset \mathbb{R}^n$ and a weight function $w: D \rightarrow \mathbb{R}$ satisfying

$$\sum_{x \in D} w(x)g(x) = \int_X g(x) d\mu(x)$$

for any polynomial $g \in \mathbb{R}[x_1, \dots, x_n]$ of degree t or less.

Definition (Design)

A **t -design** for X is a degree t cubature rule (D, w) satisfying $D \subset X$ and $\text{Im}(w) \subset (0, \infty)$.

Why are designs interesting?

$$X = S^d$$

spherical design

$$X = \mathrm{U}(d)$$

unitary design

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

qudit design

Numerical integration

$$X \subset \mathbb{R}^n$$

e.g. *Stroud 1971*

Error correction

$$X = S^d$$

e.g. *Conway, Sloane 1999*

Randomized benchmarking

$$X = \mathrm{U}(d)$$

e.g. *Dankert, Cleve, Emerson, Livine 2006*

State tomography

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Scott 2006*

State distinction

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Ambainis, Emerson 2007*

Shadow tomography

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Huang, Kueng, Preskill 2020*

What is a quantum state design?

- Complex-projective space $\mathbb{CP}^{d-1} \cong S^{2d-1}/U(1)$ is the set of all pure quantum states in \mathbb{C}^d identified up to proportionality

Definition (Complex-projective t -design)

Let $X \subset \mathbb{CP}^{d-1}$ and $w: X \rightarrow (0, \infty)$. The pair (X, w) is a **complex-projective t -design** if

$$\sum_{\phi \in X} w(\phi) f(\phi) = \int_{\mathbb{CP}^{d-1}} f(\psi) d\psi$$

for any polynomial $f(\psi)$ of degree t or less in the amplitudes and conjugate amplitudes of $|\psi\rangle$.

Generalization to arbitrary measure space

Let $X \subset \mathbb{CP}^{d-1}$ and $w: X \rightarrow (0, \infty)$. The pair (X, w) is a complex-projective t -design if

$$\sum_{\phi \in X} w(\phi) f(\phi) = \int_{\mathbb{CP}^{d-1}} f(\psi) d\psi$$

for any polynomial $f(\psi)$ of degree t or less in the amplitudes and conjugate amplitudes of $|\psi\rangle$.

Let $X \subset \mathbb{CP}^{d-1}$. The measure space (X, Σ, μ) is a complex-projective t -design if

$$\int_X f(\phi) d\mu(\phi) = \int_{\mathbb{CP}^{d-1}} f(\psi) d\psi$$

for any polynomial $f(\psi)$ of degree t or less in the amplitudes and conjugate amplitudes of $|\psi\rangle$.

Simplex, torus, and complex-projective designs

- Consider the parameterization $|p, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$ for $p \in \Delta^{d-1}$ and $\phi \in (\mathbb{R}/2\pi\mathbb{Z})^{d-1} \cong T^d$
- Consider the projection $\pi: \mathbb{C}\mathbb{P}^{d-1} \rightarrow \Delta^{d-1}$, $\pi(\psi) = \left(|\langle 0|\psi \rangle|^2, \dots, |\langle d-1|\psi \rangle|^2 \right)$

Simplex, torus, and complex-projective designs

- Consider the parameterization $|p, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$ for $p \in \Delta^{d-1}$ and $\phi \in (\mathbb{R}/2\pi\mathbb{Z})^{d-1} \cong T^d$
- Consider the projection $\pi: \mathbb{C}\mathbb{P}^{d-1} \rightarrow \Delta^{d-1}$, $\pi(\psi) = \left(|\langle 0|\psi\rangle|^2, \dots, |\langle d-1|\psi\rangle|^2\right)$

Fact

Volume integration over $\mathbb{C}\mathbb{P}^{d-1}$ is equivalent to volume integration over $\Delta^{d-1} \times T^{d-1}$

Simplex, torus, and complex-projective designs

- Consider the parameterization $|p, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$ for $p \in \Delta^{d-1}$ and $\phi \in (\mathbb{R}/2\pi\mathbb{Z})^{d-1} \cong T^d$
- Consider the projection $\pi: \mathbb{C}\mathbb{P}^{d-1} \rightarrow \Delta^{d-1}$, $\pi(\psi) = \left(|\langle 0|\psi \rangle|^2, \dots, |\langle d-1|\psi \rangle|^2 \right)$

Fact

Volume integration over $\mathbb{C}\mathbb{P}^{d-1}$ is equivalent to volume integration over $\Delta^{d-1} \times T^{d-1}$

Theorem (Informal)

If X is a $\mathbb{C}\mathbb{P}^{d-1}$ t -design, then $\pi(X)$ is a Δ^{d-1} t -design

Simplex, torus, and complex-projective designs

- Consider the parameterization $|p, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$ for $p \in \Delta^{d-1}$ and $\phi \in (\mathbb{R}/2\pi\mathbb{Z})^{d-1} \cong T^d$
- Consider the projection $\pi: \mathbb{C}\mathbb{P}^{d-1} \rightarrow \Delta^{d-1}$, $\pi(\psi) = \left(|\langle 0|\psi\rangle|^2, \dots, |\langle d-1|\psi\rangle|^2\right)$

Fact

Volume integration over $\mathbb{C}\mathbb{P}^{d-1}$ is equivalent to volume integration over $\Delta^{d-1} \times T^{d-1}$

Theorem (Informal)

If X is a $\mathbb{C}\mathbb{P}^{d-1}$ t -design, then $\pi(X)$ is a Δ^{d-1} t -design

Theorem (Informal)

If $P \subset \Delta^{d-1}$ and $S \subset T^{d-1}$ are simplex and torus t -designs, then $P \times S$ is a $\mathbb{C}\mathbb{P}^{d-1}$ t -design

A useful characterization of state designs

Lemma

Let $X \subset \mathbb{CP}^{d-1}$. The measure space (X, Σ, μ) is a complex-projective t -design iff

$$\int_X (|\phi\rangle\langle\phi|)^{\otimes t} d\mu(\phi) = \int_{\mathbb{CP}^{d-1}} (|\psi\rangle\langle\psi|)^{\otimes t} d\psi$$

A useful characterization of state designs

Lemma

Let $X \subset \mathbb{CP}^{d-1}$. The measure space (X, Σ, μ) is a complex-projective t -design iff

$$\int_X (|\phi\rangle\langle\phi|)^{\otimes t} d\mu(\phi) = \int_{\mathbb{CP}^{d-1}} (|\psi\rangle\langle\psi|)^{\otimes t} d\psi = \frac{\Pi_t^{(d)}}{\text{Tr } \Pi_t^{(d)}}$$

Example (Projector onto the symmetric subspace)

- $\Pi_1^{(d)} = \mathbb{I}$
- $\Pi_2^{(d)} = \frac{1}{2} (\mathbb{I} \otimes \mathbb{I} + \text{SWAP})$