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Use cases of infinite dimensions

Continuous-variable systems are useful in
technologies necessary for communication and
computation

Offers some advantages over finite-dimensional
spaces

▶ Continuous-parameter families of transversal
gates (Eastin-Knill no-go in DV)

▶ Hamiltonian-based bias-preserving gates
(no-go in DV)

▶ See review V. V. Albert, arXiv:2211.05714
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Why are designs interesting?

X = Sd X = U(d) X = CPd−1

spherical design unitary design qudit design

Numerical integration X ⊂ Rn e.g. Stroud 1971

Error correction X = Sd e.g. Delsarte, Goethals, Seidel 1977

Randomized benchmarking X = U(d) e.g. Dankert, Cleve, Emerson, Livine 2006

State tomography X = CPd−1 e.g. Scott 2006

State distinction X = CPd−1 e.g. Ambainis, Emerson 2007

Shadow tomography X = CPd−1 e.g. Huang, Kueng, Preskill 2020
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Continuous-variable designs

Theorem (Our work)

For any t ≥ 2, continuous-variable state/unitary t-designs do not exist.

Consider ℋ = L2(R) with (Fock) basis {|n⟩ | n ∈ N0}

Allow ourselves to use non-normalizable states (e.g. homodyne quadrature eigenstates,
GKP states, phase states)

Example (Fock states plus phase states form a rigged 2-design)

{|n⟩}n∈N0
∪
{︂
|𝜃𝜙⟩ :=

∑︁
n∈N0

ei𝜃n+i𝜙n2 |n⟩
}︂
𝜃,𝜙∈[−𝜋,𝜋)

“Rigged” is a reference to the rigged Hilbert space prescription that is used to formalize the construction
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App. 1: Continuous-variable design-based shadow tomography

Properties of designs ensure that a
relatively small number of qubit shadows
yield a good approximation of a state for
estimating observable expectation value

S =

⎧⎪⎨⎪⎩
3 |0/1⟩⟨0/1| − I
3 |±⟩⟨±| − I
3 |±i⟩⟨±i| − I

Our phase-state + Fock-state rigged
2-designs yield CV shadows with similar
guarantees

S =

{︃
(2𝜋 + 1) |𝜃𝜙⟩⟨𝜃𝜙| − I
(2𝜋 + 1) |n⟩⟨n| − I

E
S∈shadows

S = state

Estimate Tr(𝜌𝒪j) for a collection i = j , . . . ,M

Rigged 3-design, N ∼ log(M)maxj f (𝒪j)

Rigged 2-design, N ∼ log(M)maxj g(𝒪j , 𝜌)
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App. 2: Regularized rigged designs

Recall that a rigged t-design utilizes non-normalizable states (i.e. tempered distributions)

Choose a regularizer R to normalize non-normalizable states while retaining important
features of the design

Example (Hard energy cutoff)

R projects onto a (finite-dimensional) low energy subspace of L2(R); e.g. R =
∑︀d−1

n=0 |n⟩⟨n|

Example (Soft energy cutoff)

R decays with increasing energy, but maintains support on all of L2(R); e.g. R = e−𝛽n̂

|𝜃𝜙⟩ ∝
∑︁
n∈N0

ei𝜃n+i𝜙n2 |n⟩ ↦→ 1

norm
R |𝜃𝜙⟩ ∝

∑︁
n∈N0

e−𝛽n+i𝜃n+i𝜙n2 |n⟩
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App. 2: Average to entanglement fidelity

F̄ (ℰ) = E
𝜓∈D

⟨𝜓| ℰ(|𝜓⟩⟨𝜓|) |𝜓⟩ average fidelity

Fe(ℰ) = ⟨𝜑| (ℐ ⊗ ℰ)(|𝜑⟩⟨𝜑|) |𝜑⟩ entanglement fidelity

Finite dimensions

D = CPd−1 or equivalently D = 2-design

|𝜑⟩ = maximally entangled state

Beautiful relation Horodecki×3 (1999)

F̄ =
dFe + 1

d + 1

Infinite dimensions

D = R-regularized rigged 2-design

|𝜑⟩ = two mode squeezed vacuum state

With dR = (TrR)2/TrR2,

F̄ =
dRFe + 1

dR + 1

Need R invertible
When R =

∑︀d−1
n=0 |n⟩⟨n|, dR = d

When R = e−𝛽n̂, dR = 2Tr(𝜌𝛽 n̂) + 1 where 𝜌𝛽 is the thermal state
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Future directions

Find more (multimode) rigged designs, especially t ≥ 3

Experimental protocols for measuring rigged t-design POVMs

Do any of the optimality arguments from finite-dimensional design-based shadow
tomography extend to rigged designs?

Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let ℰ be an ensemble of unitaries in U(L2(R)). ℰ is an R-regularized rigged unitary
t-design if for all quantum states |𝜓⟩ ∈ L2(R), ℰ |𝜓⟩ is an R-regularized rigged state t-design.

Extend other finite dimensional design-based techniques to infinite dimensions with rigged
designs (e.g. benchmarking continuous-variable devices)
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Thanks!

Kunal Sharma Michael J. Gullans Victor V. Albert
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