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Use cases of infinite dimensions

@ Continuous-variable systems are useful in
technologies necessary for communication and
computation

o Offers some advantages over finite-dimensional
spaces
» Continuous-parameter families of transversal
gates (Eastin-Knill no-go in DV)
» Hamiltonian-based bias-preserving gates
(no-go in DV)
» See review V. V. Albert, arXiv:2211.05714
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Why are designs interesting?

X =59

X =U(d) X = Cpa-1

spherical design unitary design qudit design

Numerical integration
Error correction
Randomized benchmarking
State tomography

State distinction

Shadow tomography
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X CR"? e.g. Stroud 1971

X =51 e.g. Delsarte, Goethals, Seidel 1977

X =1U(d) e.g. Dankert, Cleve, Emerson, Livine 2006
X =CPI! eg Scott 2006

X = CP! eg. Ambainis, Emerson 2007

X =CP9"! eg Huang, Kueng, Preskill 2020
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Continuous-variable designs

Theorem (Our work)

For any t > 2, continuous-variable state/unitary t-designs do not exist.
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Continuous-variable designs

Theorem (Our work)

For any t > 2, continuous-variable state/unitary t-designs do not exist.

o Consider H = L?(R) with (Fock) basis {|n) | n € No}

@ Allow ourselves to use non-normalizable states (e.g. homodyne quadrature eigenstates,
GKP states, phase states)
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Continuous-variable designs

Theorem (Our work)

For any t > 2, continuous-variable state/unitary t-designs do not exist.

o Consider H = L?(R) with (Fock) basis {|n) | n € No}

@ Allow ourselves to use non-normalizable states (e.g. homodyne quadrature eigenstates,
GKP states, phase states)

Example (Fock states plus phase states form a rigged 2-design)

iOn-ipn?
{1} e, U { 6,) = 3 et |n>}
07906[_71’771’)

neNp

“Rigged” is a reference to the rigged Hilbert space prescription that is used to formalize the construction
J. T. losue et al. (UMD)
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App. 1: Continuous-variable design-based shadow tomography

@ Properties of designs ensure that a
relatively small number of qubit shadows
yield a good approximation of a state for
estimating observable expectation value

@ Our phase-state + Fock-state rigged
2-designs yield CV shadows with similar

guarantees

: s, S = state
g CSHiEy
3|+i) (i -1 Cre il
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@ Our phase-state + Fock-state rigged
2-designs yield CV shadows with similar

guarantees

: s, S = state
g CSHiEy
3|+i) (i -1 Cre il

Estimate Tr(pO;) for a collection i = j, ...
Rigged 3-design, N ~ log(M) max; f(O;)
Rigged 2-design, N ~ log(M) max; g(Oj, p)

M
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App. 2: Regularized rigged designs

@ Recall that a rigged t-design utilizes non-normalizable states (i.e. tempered distributions)

@ Choose a regularizer R to normalize non-normalizable states while retaining important
features of the design
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@ Choose a regularizer R to normalize non-normalizable states while retaining important
features of the design

Example (Hard energy cutoff)

R projects onto a (finite-dimensional) low energy subspace of L?(R); eg. R = Zg;é n)(n|

Example (Soft energy cutoff)

R decays with increasing energy, but maintains support on all of L2(R); e.g. R = e~ /#
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1

Ot 2 B0 n o2
|0<p> ~ Z en‘)nJrlcpn ’n> s R|0<,0> o Z efdn+19n+1¢n |I'I>
neNo norm neNo
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App. 2: Average to entanglement fidelity

F(&) = JEp CLE WD) [¥)
Fe(&) = (W (Z @ E)(|0)(2]) [0)
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App. 2: Average to entanglement fidelity

F(&) = E (WIE() WD) average fidelity
Fe(€) = (ol (Z @ E)(|¢)(#]) |¢) entanglement fidelity

FINITE DIMENSIONS
o D = CPY! or equivalently D = 2-design

@ |¢) = maximally entangled state

@ Beautiful relation Horodeckix3 (1999)

dFe +1

F—
dri
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F(&) = E (WIE() WD) average fidelity
Fe(€) = (ol (Z @ E)(|¢)(#]) |¢) entanglement fidelity

FINITE DIMENSIONS INFINITE DIMENSIONS
o D = CPY! or equivalently D = 2-design ® D = R-regularized rigged 2-design
@ |p) = maximally entangled state @ |p) = two mode squeezed vacuum state
@ Beautiful relation Horodeckix3 (1999) e With dg = (TrR)?/ Tr R?,
,_:ZdFe+1 l_=:dRF6+1
d+1 drp +1

Need R invertible
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@ |p) = maximally entangled state @ |p) = two mode squeezed vacuum state
@ Beautiful relation Horodeckix3 (1999) e With dg = (TrR)?/ Tr R?,
l_=:dFe+1 I_::dRFe+1
d+1 drp +1

Need R invertible

When R = 37~ [n)(n|, dr = d

When R = e 7" dgr = 2Tr(psh) + 1 where pg is the thermal state
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Future directions

e Find more (multimode) rigged designs, especially t > 3
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Future directions

e Find more (multimode) rigged designs, especially t > 3
@ Experimental protocols for measuring rigged t-design POVMs

@ Do any of the optimality arguments from finite-dimensional design-based shadow
tomography extend to rigged designs?
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Future directions

e Find more (multimode) rigged designs, especially t > 3
@ Experimental protocols for measuring rigged t-design POVMs

@ Do any of the optimality arguments from finite-dimensional design-based shadow
tomography extend to rigged designs?

o Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let £ be an ensemble of unitaries in U(L?(R)). £ is an R-regularized rigged unitary
t-design if for all quantum states |¢)) € L2(R), € |+)) is an R-regularized rigged state t-design.
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Future directions

e Find more (multimode) rigged designs, especially t > 3
@ Experimental protocols for measuring rigged t-design POVMs

@ Do any of the optimality arguments from finite-dimensional design-based shadow
tomography extend to rigged designs?

o Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let £ be an ensemble of unitaries in U(L?(R)). £ is an R-regularized rigged unitary
t-design if for all quantum states |¢)) € L2(R), € |+)) is an R-regularized rigged state t-design.

@ Extend other finite dimensional design-based techniques to infinite dimensions with rigged
designs (e.g. benchmarking continuous-variable devices)
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Thanks!

Kunal Sharma Michael J. Gullans Victor V. Albert
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