

Continuous-variable quantum states designs: theory and applications

Joseph T. Iosue, Kunal Sharma, Michael J. Gullans, Victor V. Albert

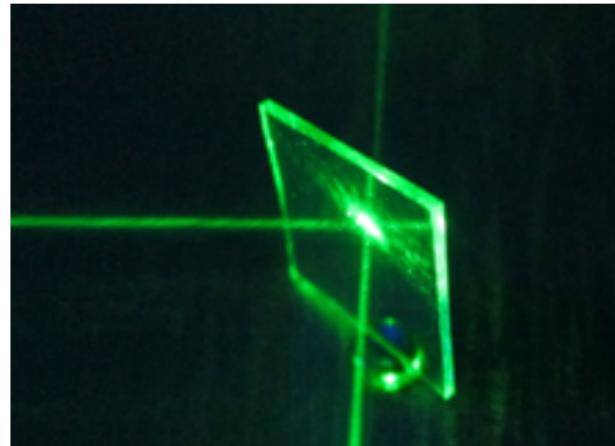
arXiv:2211.05127

March Meeting 2023
09 March 2023

JOINT
QUANTUM
INSTITUTE

Use cases of infinite dimensions

- Continuous-variable systems are useful in technologies necessary for communication and computation
- Offers some advantages over finite-dimensional spaces
 - ▶ Continuous-parameter families of transversal gates (Eastin-Knill no-go in DV)
 - ▶ Hamiltonian-based bias-preserving gates (no-go in DV)
 - ▶ See review [V. V. Albert, arXiv:2211.05714](https://arxiv.org/abs/2211.05714)



Why are designs interesting?

$$X = S^d$$

spherical design

$$X = \mathrm{U}(d)$$

unitary design

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

qudit design

Numerical integration

$$X \subset \mathbb{R}^n$$

e.g. *Stroud 1971*

Error correction

$$X = S^d$$

e.g. *Delsarte, Goethals, Seidel 1977*

Randomized benchmarking

$$X = \mathrm{U}(d)$$

e.g. *Dankert, Cleve, Emerson, Livine 2006*

State tomography

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Scott 2006*

State distinction

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Ambainis, Emerson 2007*

Shadow tomography

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Huang, Kueng, Preskill 2020*

Why are designs interesting?

$$X = S^d$$

spherical design

$$X = \mathrm{U}(d)$$

unitary design

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

qudit design

Numerical integration

$$X \subset \mathbb{R}^n$$

e.g. *Stroud 1971*

Error correction

$$X = S^d$$

e.g. *Delsarte, Goethals, Seidel 1977*

Randomized benchmarking

$$X = \mathrm{U}(d)$$

e.g. *Dankert, Cleve, Emerson, Livine 2006*

State tomography

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Scott 2006*

State distinction

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Ambainis, Emerson 2007*

Shadow tomography

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Huang, Kueng, Preskill 2020*

Continuous-variable designs

Theorem (Our work)

*For any $t \geq 2$, continuous-variable state/unitary t -designs **do not** exist.*

Continuous-variable designs

Theorem (Our work)

For any $t \geq 2$, continuous-variable state/unitary t -designs **do not** exist.

- Consider $\mathcal{H} = L^2(\mathbb{R})$ with (Fock) basis $\{|n\rangle \mid n \in \mathbb{N}_0\}$
- Allow ourselves to use non-normalizable states (e.g. homodyne quadrature eigenstates, GKP states, phase states)

Continuous-variable designs

Theorem (Our work)

For any $t \geq 2$, continuous-variable state/unitary t -designs **do not** exist.

- Consider $\mathcal{H} = L^2(\mathbb{R})$ with (Fock) basis $\{|n\rangle \mid n \in \mathbb{N}_0\}$
- Allow ourselves to use non-normalizable states (e.g. homodyne quadrature eigenstates, GKP states, phase states)

Example (Fock states plus phase states form a **rigged 2-design**)

$$\{|n\rangle\}_{n \in \mathbb{N}_0} \cup \left\{ |\theta_\varphi\rangle := \sum_{n \in \mathbb{N}_0} e^{i\theta n + i\varphi n^2} |n\rangle \right\}_{\theta, \varphi \in [-\pi, \pi)}$$

“Rigged” is a reference to the rigged Hilbert space prescription that is used to formalize the construction

App. 1: Continuous-variable design-based shadow tomography

- Properties of designs ensure that a relatively small number of **qubit shadows** yield a good approximation of a state for estimating observable expectation value

$$S = \begin{cases} 3|0/1\rangle\langle 0/1| - \mathbb{I} \\ 3|\pm\rangle\langle \pm| - \mathbb{I} \\ 3|\pm i\rangle\langle \pm i| - \mathbb{I} \end{cases}$$

$$\mathbb{E}_{S \in \text{shadows}} S = \text{state}$$

- Our phase-state + Fock-state rigged 2-designs yield CV shadows with similar guarantees

$$S = \begin{cases} (2\pi + 1)|\theta_\varphi\rangle\langle \theta_\varphi| - \mathbb{I} \\ (2\pi + 1)|n\rangle\langle n| - \mathbb{I} \end{cases}$$

App. 1: Continuous-variable design-based shadow tomography

- Properties of designs ensure that a relatively small number of **qubit shadows** yield a good approximation of a state for estimating observable expectation value

$$S = \begin{cases} 3|0/1\rangle\langle 0/1| - \mathbb{I} \\ 3|\pm\rangle\langle \pm| - \mathbb{I} \\ 3|\pm i\rangle\langle \pm i| - \mathbb{I} \end{cases}$$

$$\mathbb{E}_{S \in \text{shadows}} S = \text{state}$$

- Our phase-state + Fock-state rigged 2-designs yield CV shadows with similar guarantees

$$S = \begin{cases} (2\pi + 1)|\theta_\varphi\rangle\langle \theta_\varphi| - \mathbb{I} \\ (2\pi + 1)|n\rangle\langle n| - \mathbb{I} \end{cases}$$

Estimate $\text{Tr}(\rho \mathcal{O}_j)$ for a collection $i = j, \dots, M$

Rigged 3-design, $N \sim \log(M) \max_j f(\mathcal{O}_j)$

Rigged 2-design, $N \sim \log(M) \max_j g(\mathcal{O}_j, \rho)$

App. 2: Regularized rigged designs

- Recall that a rigged t -design utilizes non-normalizable states (i.e. tempered distributions)
- Choose a *regularizer* R to normalize non-normalizable states while retaining important features of the design

App. 2: Regularized rigged designs

- Recall that a rigged t -design utilizes non-normalizable states (i.e. tempered distributions)
- Choose a *regularizer* R to normalize non-normalizable states while retaining important features of the design

Example (Hard energy cutoff)

R projects onto a (finite-dimensional) low energy subspace of $L^2(\mathbb{R})$; e.g. $R = \sum_{n=0}^{d-1} |n\rangle\langle n|$

Example (Soft energy cutoff)

R decays with increasing energy, but maintains support on all of $L^2(\mathbb{R})$; e.g. $R = e^{-\beta \hat{h}}$

App. 2: Regularized rigged designs

- Recall that a rigged t -design utilizes non-normalizable states (i.e. tempered distributions)
- Choose a *regularizer* R to normalize non-normalizable states while retaining important features of the design

Example (Hard energy cutoff)

R projects onto a (finite-dimensional) low energy subspace of $L^2(\mathbb{R})$; e.g. $R = \sum_{n=0}^{d-1} |n\rangle\langle n|$

Example (Soft energy cutoff)

R decays with increasing energy, but maintains support on all of $L^2(\mathbb{R})$; e.g. $R = e^{-\beta \hat{h}}$

$$|\theta_\varphi\rangle \propto \sum_{n \in \mathbb{N}_0} e^{i\theta n + i\varphi n^2} |n\rangle \mapsto \frac{1}{\text{norm}} R |\theta_\varphi\rangle \propto \sum_{n \in \mathbb{N}_0} e^{-\beta n + i\theta n + i\varphi n^2} |n\rangle$$

App. 2: Average to entanglement fidelity

$$\bar{F}(\mathcal{E}) = \mathbb{E}_{\psi \in D} \langle \psi | \mathcal{E}(|\psi\rangle\langle\psi|) |\psi \rangle \quad \text{average fidelity}$$

$$F_e(\mathcal{E}) = \langle \phi | (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) |\phi \rangle \quad \text{entanglement fidelity}$$

App. 2: Average to entanglement fidelity

$$\bar{F}(\mathcal{E}) = \mathbb{E}_{\psi \in D} \langle \psi | \mathcal{E}(|\psi\rangle\langle\psi|) |\psi \rangle \quad \text{average fidelity}$$

$$F_e(\mathcal{E}) = \langle \phi | (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) |\phi \rangle \quad \text{entanglement fidelity}$$

FINITE DIMENSIONS

- $D = \mathbb{CP}^{d-1}$ or equivalently $D = 2\text{-design}$
- $|\phi\rangle$ = maximally entangled state
- Beautiful relation *Horodecki et al. (1999)*

$$\bar{F} = \frac{dF_e + 1}{d + 1}$$

App. 2: Average to entanglement fidelity

$$\bar{F}(\mathcal{E}) = \mathbb{E}_{\psi \in D} \langle \psi | \mathcal{E}(|\psi\rangle\langle\psi|) | \psi \rangle \quad \text{average fidelity}$$

$$F_e(\mathcal{E}) = \langle \phi | (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) | \phi \rangle \quad \text{entanglement fidelity}$$

FINITE DIMENSIONS

- $D = \mathbb{C}\mathbb{P}^{d-1}$ or equivalently $D = 2\text{-design}$
- $|\phi\rangle$ = maximally entangled state
- Beautiful relation *Horodecki et al. (1999)*

$$\bar{F} = \frac{dF_e + 1}{d + 1}$$

INFINITE DIMENSIONS

- $D = R\text{-regularized rigged 2-design}$
- $|\phi\rangle$ = two mode squeezed vacuum state
- With $d_R = (\text{Tr } R)^2 / \text{Tr } R^2$,

$$\bar{F} = \frac{d_R F_e + 1}{d_R + 1}$$

Need R invertible

App. 2: Average to entanglement fidelity

$$\bar{F}(\mathcal{E}) = \mathbb{E}_{\psi \in D} \langle \psi | \mathcal{E}(|\psi\rangle\langle\psi|) |\psi \rangle \quad \text{average fidelity}$$

$$F_e(\mathcal{E}) = \langle \phi | (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) |\phi \rangle \quad \text{entanglement fidelity}$$

FINITE DIMENSIONS

- $D = \mathbb{C}\mathbb{P}^{d-1}$ or equivalently $D = 2\text{-design}$
- $|\phi\rangle$ = maximally entangled state
- Beautiful relation *Horodecki et al. (1999)*

$$\bar{F} = \frac{dF_e + 1}{d + 1}$$

When $R = \sum_{n=0}^{d-1} |n\rangle\langle n|$, $d_R = d$

INFINITE DIMENSIONS

- $D = R\text{-regularized rigged 2-design}$
- $|\phi\rangle$ = two mode squeezed vacuum state
- With $d_R = (\text{Tr } R)^2 / \text{Tr } R^2$,

$$\bar{F} = \frac{d_R F_e + 1}{d_R + 1}$$

Need R invertible

App. 2: Average to entanglement fidelity

$$\bar{F}(\mathcal{E}) = \mathbb{E}_{\psi \in D} \langle \psi | \mathcal{E}(|\psi\rangle\langle\psi|) | \psi \rangle \quad \text{average fidelity}$$

$$F_e(\mathcal{E}) = \langle \phi | (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) | \phi \rangle \quad \text{entanglement fidelity}$$

FINITE DIMENSIONS

- $D = \mathbb{C}\mathbb{P}^{d-1}$ or equivalently $D = 2\text{-design}$
- $|\phi\rangle$ = maximally entangled state
- Beautiful relation *Horodecki et al. (1999)*

$$\bar{F} = \frac{dF_e + 1}{d + 1}$$

INFINITE DIMENSIONS

- $D = R\text{-regularized rigged 2-design}$
- $|\phi\rangle$ = two mode squeezed vacuum state
- With $d_R = (\text{Tr } R)^2 / \text{Tr } R^2$,

$$\bar{F} = \frac{d_R F_e + 1}{d_R + 1}$$

Need R invertible

When $R = \sum_{n=0}^{d-1} |n\rangle\langle n|$, $d_R = d$

When $R = e^{-\beta \hat{n}}$, $d_R = 2\text{Tr}(\rho_\beta \hat{n}) + 1$ where ρ_β is the thermal state

Future directions

- Find more (multimode) rigged designs, especially $t \geq 3$

Future directions

- Find more (multimode) rigged designs, especially $t \geq 3$
- Experimental protocols for measuring rigged t -design POVMs

Future directions

- Find more (multimode) rigged designs, especially $t \geq 3$
- Experimental protocols for measuring rigged t -design POVMs
- Do any of the optimality arguments from finite-dimensional design-based shadow tomography extend to rigged designs?

Future directions

- Find more (multimode) rigged designs, especially $t \geq 3$
- Experimental protocols for measuring rigged t -design POVMs
- Do any of the optimality arguments from finite-dimensional design-based shadow tomography extend to rigged designs?
- Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let \mathcal{E} be an ensemble of unitaries in $U(L^2(\mathbb{R}))$. \mathcal{E} is an **R -regularized rigged unitary t -design** if for *all* quantum states $|\psi\rangle \in L^2(\mathbb{R})$, $\mathcal{E}|\psi\rangle$ is an R -regularized rigged state t -design.

Future directions

- Find more (multimode) rigged designs, especially $t \geq 3$
- Experimental protocols for measuring rigged t -design POVMs
- Do any of the optimality arguments from finite-dimensional design-based shadow tomography extend to rigged designs?
- Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let \mathcal{E} be an ensemble of unitaries in $U(L^2(\mathbb{R}))$. \mathcal{E} is an **R -regularized rigged unitary t -design** if for *all* quantum states $|\psi\rangle \in L^2(\mathbb{R})$, $\mathcal{E}|\psi\rangle$ is an R -regularized rigged state t -design.

- Extend other finite dimensional design-based techniques to infinite dimensions with rigged designs (e.g. benchmarking continuous-variable devices)

Thanks!

Kunal Sharma

Michael J. Gullans

Victor V. Albert