

Page curves and typical entanglement in linear optics

Joseph T. Iosue, Adam Ehrenberg, Dominik Hangleiter, Abhinav Deshpande,
Alexey V. Gorshkov

arXiv:2209.06838

March Meeting 2023
09 March 2023

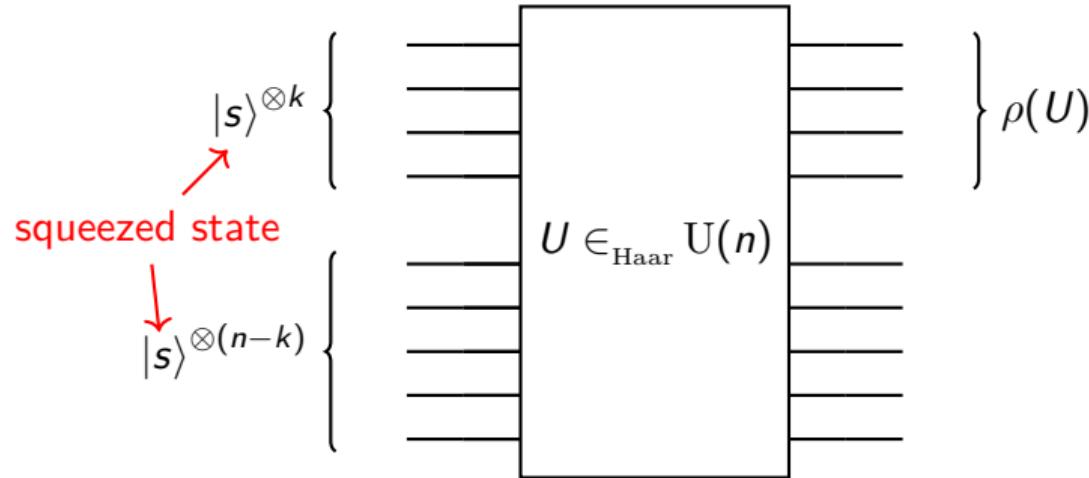
JOINT CENTER FOR
QUANTUM INFORMATION
AND COMPUTER SCIENCE

JOINT
QUANTUM
INSTITUTE

Introduction

- Gaussian Boson Sampling was one of the first experimental demonstrations of quantum supremacy
- There is a complicated relationship between entanglement and complexity
- Average and typical entanglement has been analytically computed in fermionic Gaussian states, qubits, qudits, and all of the above with certain symmetry constraints
- It has never been computed for bosonic Gaussian states!

Set up



Task: analytically compute $\mathbb{E}_{U \in \text{U}(n)}$ and $\text{Var}_{U \in \text{U}(n)}$ of $S_\alpha(\rho(U))$ asymptotically in $n \rightarrow \infty$

Rényi- α entropy

First main result

Theorem (Rényi-2 Page curve)

Let $s \in \mathbb{R}$ and $r \equiv k/n \in [0, 1]$. Then, asymptotically in $n \rightarrow \infty$,

$$\mathbb{E}_{U \in \mathcal{U}(n)} S_2(U) = n\alpha(s, r) - \lambda(s, r) + o(1),$$

where

$$\alpha(s, r) = \sum_{\ell=1}^{\infty} \frac{\tanh^{2\ell}(2s)}{2\ell} \left(r - \frac{r^{\ell+1}}{\ell+1} \binom{2\ell}{\ell} {}_2F_1(1-\ell, \ell; \ell+2; r) \right),$$

$$\lambda(s, r) = -\frac{1}{8} \log \left(1 - 4r(1-r) \tanh^2(2s) \right),$$

where ${}_2F_1$ is the hypergeometric function. At $r = 1/2$, these simplify to $\alpha(s, 1/2) = \log \cosh s$ and $\lambda(s, 1/2) = \frac{1}{4} \log \cosh(2s)$.

First main result (graphical)

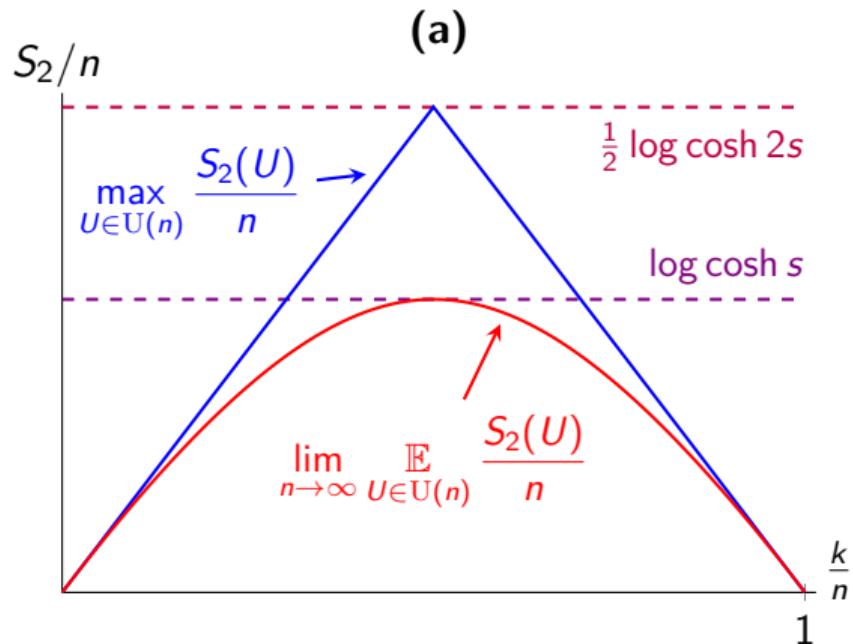
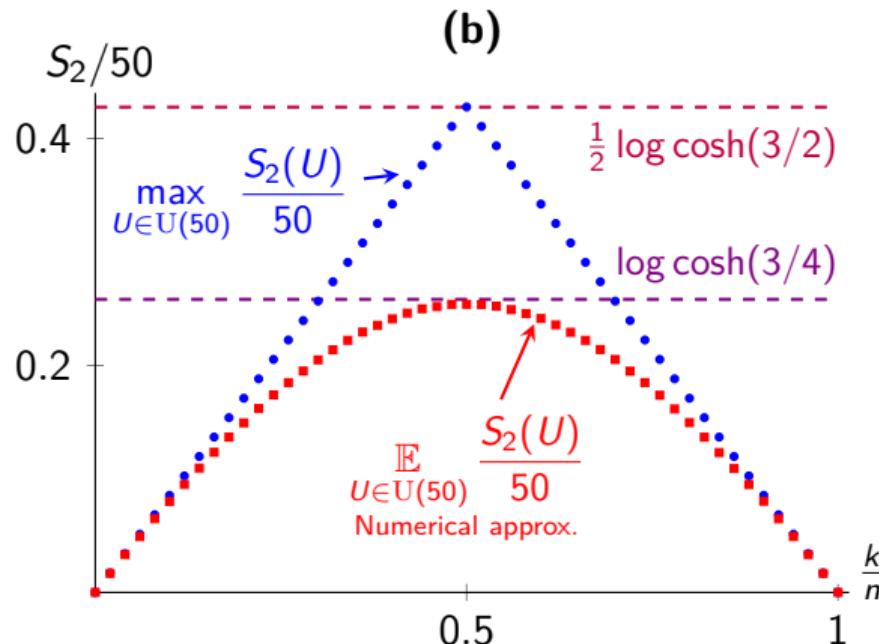


Figure: (a) Exact results for the Rényi-2 Page curve. (b) Numerical simulations of the Rényi-2 Page curve for $n = 50$ modes and squeezing $s = 3/4$. We plot the values for each $k \in \{0, 1, \dots, 50\}$.

Typical entanglement

Definition

Let S be a nonnegative random variable on the unitary group $U(n)$, and denote its value at $U \in U(n)$ by $S(U)$.

Typical entanglement

Definition

Let S be a nonnegative random variable on the unitary group $U(n)$, and denote its value at $U \in U(n)$ by $S(U)$. S is called **weakly typical** if for any constant $\epsilon > 0$,

$$\lim_{n \rightarrow \infty} \Pr_{U \in U(n)} \left[\left| \frac{S(U)}{\mathbb{E}_{V \in U(n)} S(V)} - 1 \right| < \epsilon \right] = 1.$$

Typical entanglement

Definition

Let S be a nonnegative random variable on the unitary group $U(n)$, and denote its value at $U \in U(n)$ by $S(U)$. S is called **weakly typical** if for any constant $\epsilon > 0$,

$$\lim_{n \rightarrow \infty} \Pr_{U \in U(n)} \left[\left| \frac{S(U)}{\mathbb{E}_{V \in U(n)} S(V)} - 1 \right| < \epsilon \right] = 1.$$

S is called **strongly typical** if for any constant $\epsilon > 0$,

$$\lim_{n \rightarrow \infty} \Pr_{U \in U(n)} \left[\left| S(U) - \mathbb{E}_{V \in U(n)} S(V) \right| < \epsilon \right] = 1.$$

Second main result

Theorem (Typical entanglement)

		$k \in \Theta(n)$	$k \in o(n)$	$k \in o(n^{1/3})$ (Fukuda 2019)
Equal	Rényi-2	weak	strong	strong
squeezing	von Neumann	?	weak	strong
Unequal	Rényi-2	?	weak*	strong
squeezing	von Neumann	?	weak*	strong

Table: Rigorous results on typical entanglement in Gaussian bosonic systems. Note that “weak” indicates that the result is not fully proven, but depends on a conjecture that we make.*

Second main result (proof)

Theorem

Let $s \in \mathbb{R}$ and $r \equiv k/n \in [0, 1]$. Then

$$\lim_{n \rightarrow \infty} \operatorname{Var}_{U \in \mathbb{U}(n)} S_2(U) = \sum_{d=2}^{\infty} \omega^{(d)} \tanh^{2d}(2s) (r(1-r))^d,$$

where $\omega^{(d)} \in \mathbb{Q}$ is some number that depends only on d . In particular, $\omega^{(2)} = 1/2$.

- Typicality comes via application of Chebyshev's inequality

Proof technique

Asymptotically in $n \rightarrow \infty$, for all $k \in \{1, \dots, n\}$, and for all $\ell \in \mathbb{N}$, compute

$$\begin{aligned} & \sum_{i_1, \dots, i_{2\ell}=1}^k \sum_{i'_1, \dots, i'_{2\ell}=1}^k \sum_{j_1, \dots, j_{2\ell}=1}^n \sum_{j'_1, \dots, j'_{2\ell}=1}^n \sum_{\sigma, \tau \in S_{2\ell}} \text{Wg}(\sigma\tau^{-1}, n) \\ & \quad \times \delta_{i'_{2\ell}, i_1} \delta_{i'_1, i_2} \delta_{i'_2, i_3} \dots \delta_{i'_{2\ell-1}, i_{2\ell}} \\ & \quad \times \delta_{j_1, j_2} \delta_{j'_1, j'_2} \dots \delta_{j_{2\ell-1}, j_{2\ell}} \delta_{j'_{2\ell-1}, j'_{2\ell}} \\ & \quad \times \delta_{i_1, i'_{\sigma(1)}} \dots \delta_{i_{2\ell}, i'_{\sigma(2\ell)}} \\ & \quad \times \delta_{j_1, j'_{\tau(1)}} \dots \delta_{j_{2\ell}, j'_{\tau(2\ell)}}, \end{aligned}$$

where $S_{2\ell}$ denotes permutations, $\text{Wg}(\sigma, n) = \frac{1}{n^{q+|\sigma|}} \prod_i (-1)^{|c_i^{(\sigma)}|-1} C_{|c_i^{(\sigma)}|-1}$, C_i is the i^{th} Catalan number, and $c_i^{(\sigma)}$ is the cyclic decomposition of the permutation σ .

Future directions

- Generalize to unequal squeezing

Future directions

- Generalize to unequal squeezing
- Analytically compute the Page curve $\mathbb{E}_{U \in \mathcal{U}(n)} S_\alpha(U)$ for all α

Future directions

- Generalize to unequal squeezing
- Analytically compute the Page curve $\mathbb{E}_{U \in \mathcal{U}(n)} S_\alpha(U)$ for all α
- Prove the conjecture necessary for one of our typicality results

Future directions

- Generalize to unequal squeezing
- Analytically compute the Page curve $\mathbb{E}_{U \in \mathcal{U}(n)} S_\alpha(U)$ for all α
- Prove the conjecture necessary for one of our typicality results
- Strengthen typicality results

Future directions

- Generalize to unequal squeezing
- Analytically compute the Page curve $\mathbb{E}_{U \in \mathcal{U}(n)} S_\alpha(U)$ for all α
- Prove the conjecture necessary for one of our typicality results
- Strengthen typicality results
- Study implications for Gaussian Boson Sampling (what is the relationship between entanglement and complexity?)

Future directions

- Generalize to unequal squeezing
- Analytically compute the Page curve $\mathbb{E}_{U \in \mathcal{U}(n)} S_\alpha(U)$ for all α
- Prove the conjecture necessary for one of our typicality results
- Strengthen typicality results
- Study implications for Gaussian Boson Sampling (what is the relationship between entanglement and complexity?)

Thanks!