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Introduction
Entanglement is a key feature of quantum physics and can be used as a resource to
complete various tasks, such as teleportation, key distribution, dense coding, and many
others. Studying average and typical entanglement is necessary for learning about the
useful part of entanglement and what utility random states have. In this work, we consider
the average and typical entanglement of Gaussian Boson Sampling output states.
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Figure 1: Pictorial representation of the setup we consider.

To begin, n harmonic oscillator modes are initialized in a product states of squeezed
vacuum states |s⟩ ∈ L2(R) with squeezing strength s. Then, a Haar random passive
(energy-conserving) Gaussian unitary U is applied to the n modes. Note that the group of
passive Gaussian unitaries is isomorphic to Sp(2n)∩O(2n) ∼= U(n). Finally, we consider
the Rényi-2 entanglement entropy, S2(U) = − log Tr ρ(U)2, of the final reduced state
on 1 ≤ k ≤ n modes, ρ(U).

Average entanglement
We study the average entanglement in a subsystem of k modes, EU∈U(n) S2(U). Viewed
as a function of k, this quantity is known as the Page curve. Using the Rényi-2 Page
curve, we can also upper and lower bound the von Neumann Page curve.

Theorem (Rényi-2 Page curve)
Let s ∈ R and r ≡ k/n ∈ [0, 1]. Then, asymptotically in n → ∞,
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where 2F1 is the hypergeometric function. At r = 1/2, these simplify to
α(s, 1/2) = log cosh s and λ(s, 1/2) = 1

4
log cosh(2s).
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Figure 2: (a) Exact results for the Rényi-2 Page curve. (b) Numerical simulations of the
Rényi-2 Page curve for n = 50 modes and squeezing s = 3/4. We plot the values for
each k ∈ {0, 1, . . . , 50}.

α(s, r) can be written as α(s, r) =
∑∞

ℓ=1
tanh2(2s)

2ℓ
Gℓ(r), where Gℓ(r) := r − fℓ(r) and

fℓ(r) is a polynomial of degrees ℓ + 1 through 2ℓ in r. Polynomials Gℓ(r) of this form
are uniquely determined by the requirement that Gℓ(r) = Gℓ(1− r), which ensures that

the Rényi-2 entropy of a subsystem is equal to that of its complement since we are
considering pure states. It is from this requirement that we ultimately derive the Page
curve. We show that the resulting Gℓ(r) can be understood as a good approximation
to m(r) := min(r, 1 − r) from below. Indeed, the approximation is especially good
near the endpoints r = 0 and r = 1, where the first ℓ derivatives of Gℓ(r) match
those of m(r). As ℓ → ∞, the approximation becomes better and better such that
limℓ→∞Gℓ(r) = m(r). This provides an interpretation of the derived form of the Page
curve. The strength of the squeezing s determines the weight that the Page curve has
on the ℓth approximation to m(r). For small squeezing, only low order approximations
contribute, with the most dominant contribution being the parabolic shape G1(r) =

r(1− r). When the squeezing is increased, there is more contribution from higher order
approximations, giving the Page curve more of the triangle shape of m(r). We see a
manifestation of this interpretation as
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α(s, r) = 2min(r, 1− r).

Typical entanglement
Typicality is of interest because it characterizes the applicability of statistical averages. In
order to quantify the deviation from average, we consider two measures of deviation cor-
responding to multiplicative and additive distance. If the multiplicative distance between
a quantity and its average vanishes in the thermodynamic limit, then that quantity is
called weakly typical. If the additive distance vanishes in this limit, then that quantity
is called strongly typical.

Definition
Let S be a nonnegative random variable on the unitary group U(n), and denote its
value at U ∈ U(n) by S(U). S is called weakly typical if for any constant ϵ > 0,
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Theorem (Typical entanglement)
k ∈ Θ(n) k ∈ o(n) k ∈ o

n1/3
 [2]

Equal Rényi-2 weak strong strong
squeezing von Neumann ? weak strong

Unequal Rényi-2 ? weak∗ strong
squeezing von Neumann ? weak∗ strong

Table 1: Rigorous results on typical entanglement in Gaussian bosonic systems. Note
that “weak∗” indicates that the result is not fully proven, but depends on a conjecture
that we make.

The typical entanglement proof again crucially relies on the symmetry k 7→ n − k of
the entanglement entropy. Specifically, we derive the functional form of the variance
VarU∈U(n) S2(U) using the symmetry and show that the variance is asymptotically inde-
pendent of the number of modes. Then, we utilize the variance in Chebyshev’s inequality
to prove typicality.

Theorem
Let s ∈ R and r ≡ k/n ∈ [0, 1]. Then

lim
n→∞ Var
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S2(U) =
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ω(d) tanh2d(2s) (r(1− r))d ,

where ω(d) ∈ Q is some number that depends only on d. In particular, ω(2) = 1/2.
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