

Continuous-variable quantum states designs: theory and applications

Joseph T. Iosue, Kunal Sharma, Michael J. Gullans, Victor V. Albert

arXiv:2211.05127

Quantum Information Processing (QIP)
08 February 2023

JOINT
QUANTUM
INSTITUTE

Overview

- 1 Motivation
- 2 Finite dimensions
- 3 Infinite dimensions
- 4 Applications
- 5 Outlook

Overview

1 Motivation

2 Finite dimensions

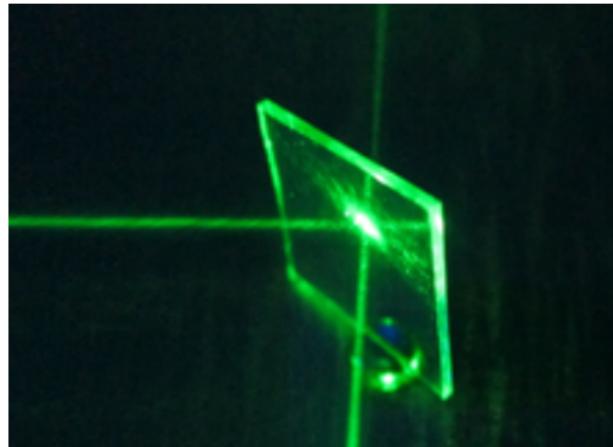
3 Infinite dimensions

4 Applications

5 Outlook

Use cases of infinite dimensions

- Continuous-variable systems are useful in technologies necessary for communication and computation
- Offers some advantages over finite-dimensional spaces
 - ▶ Continuous-parameter families of transversal gates (Eastin-Knill no-go in DV)
 - ▶ Hamiltonian-based bias-preserving gates (no-go in DV)
 - ▶ See review [V. V. Albert, arXiv:2211.05714](https://arxiv.org/abs/2211.05714)



Rough discrete & continuous variable analogies

discrete (finite)	continuous (infinite)
qudit	oscillator
Pauli group generated by $\{X, Z\}$	displacements generated by $\{e^{i\hat{x}}, e^{i\hat{p}}\}$
stabilizer states	Gaussian states Gross (2006)
Clifford group	Gaussian operations
Pauli/Clifford channels	Gaussian channels
Pauli measurements	homodyne measurements
state tomography	Wigner function
stabilizer/Clifford 2*-design	Gaussian states/operations NOT 2-design

*: For prime dimensions, [Graydon et. al. \(2021\)](#)

Blume-Kohout,
Turner 2011

Rough discrete & continuous variable analogies

discrete (finite)	continuous (infinite)
qudit	oscillator
Pauli group generated by $\{X, Z\}$	displacements generated by $\{e^{i\hat{x}}, e^{i\hat{p}}\}$
stabilizer states	Gaussian states Gross (2006)
Clifford group	Gaussian operations
Pauli/Clifford channels	Gaussian channels
Pauli measurements	homodyne measurements
state tomography	Wigner function
stabilizer/Clifford 2*-design	Gaussian states/operations NOT 2-design

*: For prime dimensions, [Graydon et. al. \(2021\)](#)

Blume-Kohout,
Turner 2011

Rough discrete & continuous variable analogies

discrete (finite)	continuous (infinite)
qudit	oscillator
Pauli group generated by $\{X, Z\}$	displacements generated by $\{e^{i\hat{x}}, e^{i\hat{p}}\}$
stabilizer states	Gaussian states <i>Gross (2006)</i>
Clifford group	Gaussian operations
Pauli/Clifford channels	Gaussian channels
Pauli measurements	homodyne measurements
state tomography	Wigner function
stabilizer/Clifford 2*-design	Gaussian states/operations NOT 2-design

*: For prime dimensions, *Graydon et. al. (2021)*

Blume-Kohout,
Turner 2011

Rough discrete & continuous variable analogies

discrete (finite)	continuous (infinite)
qudit	oscillator
Pauli group generated by $\{X, Z\}$	displacements generated by $\{e^{i\hat{x}}, e^{i\hat{p}}\}$
stabilizer states	Gaussian states <i>Gross (2006)</i>
Clifford group	Gaussian operations
Pauli/Clifford channels	Gaussian channels
Pauli measurements	homodyne measurements
state tomography	Wigner function
stabilizer/Clifford 2*-design	Gaussian states/operations NOT 2-design

*: For prime dimensions, *Graydon et. al. (2021)*

Blume-Kohout,
Turner 2011

Rough discrete & continuous variable analogies

discrete (finite)	continuous (infinite)
qudit	oscillator
Pauli group generated by $\{X, Z\}$	displacements generated by $\{e^{i\hat{x}}, e^{i\hat{p}}\}$
stabilizer states	Gaussian states Gross (2006)
Clifford group	Gaussian operations
Pauli/Clifford channels	Gaussian channels
Pauli measurements	homodyne measurements
state tomography	Wigner function
stabilizer/Clifford 2*-design	Gaussian states/operations NOT 2-design

*: For prime dimensions, [Graydon et. al. \(2021\)](#)

Overview

1 Motivation

2 Finite dimensions

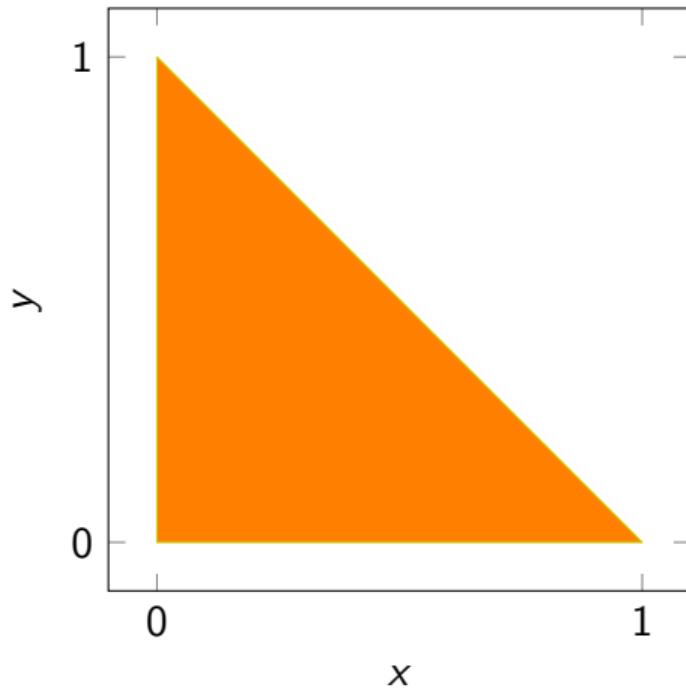
3 Infinite dimensions

4 Applications

5 Outlook

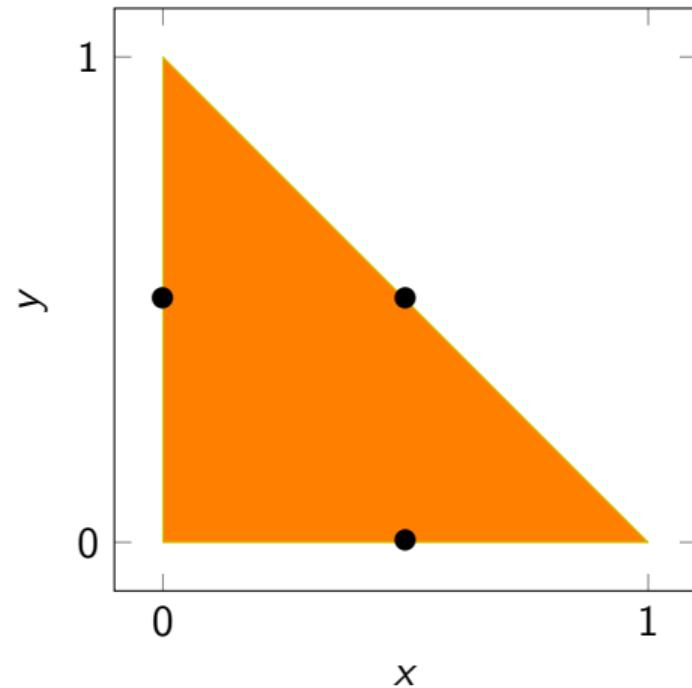
What is a t -design? $\int_{\text{hard space}} (\deg t \text{ poly}) = \int_{\text{easier space}} (\deg t \text{ poly})$

- Let $X \subset \mathbb{R}^2$ be the triangle with vertices $(0, 0), (1, 0), (0, 1)$



What is a t -design? $\int_{\text{hard space}} (\deg t \text{ poly}) = \int_{\text{easier space}} (\deg t \text{ poly})$

- Let $X \subset \mathbb{R}^2$ be the triangle with vertices $(0, 0), (1, 0), (0, 1)$
- Let $\mathcal{D} = \{(0, 1/2), (1/2, 0), (1/2, 1/2)\} \subset X$



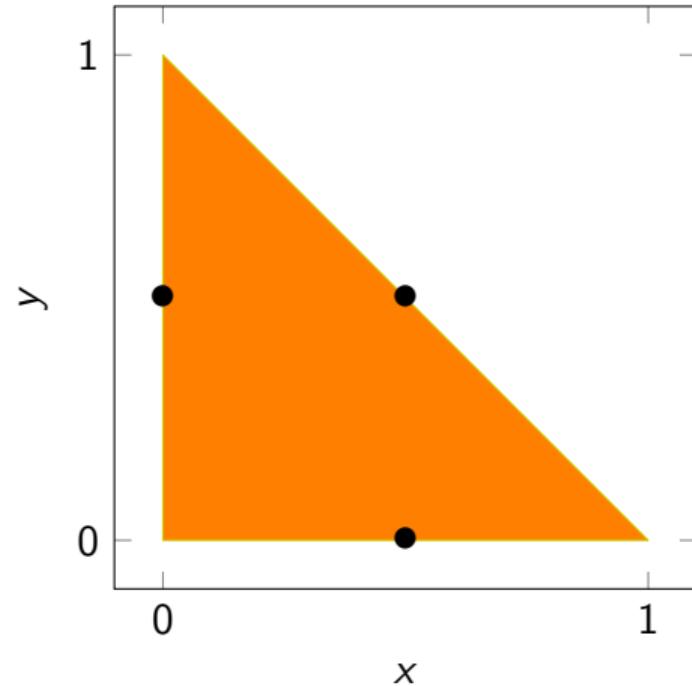
What is a t -design? $\int_{\text{hard space}} (\deg t \text{ poly}) = \int_{\text{easier space}} (\deg t \text{ poly})$

- Let $X \subset \mathbb{R}^2$ be the triangle with vertices $(0, 0), (1, 0), (0, 1)$
- Let $\mathcal{D} = \{(0, 1/2), (1/2, 0), (1/2, 1/2)\} \subset X$

\mathcal{D} is a 2-design for X

If $g(x, y) = ax^2 + by^2 + cxy + dx + ey + f$, then

$$\frac{1}{6} \sum_{(x,y) \in \mathcal{D}} g(x, y) = \int_X g(x, y) \, dx \, dy$$



Why are designs interesting?

$$X = S^d$$

spherical design

$$X = \mathrm{U}(d)$$

unitary design

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

qudit design

Numerical integration

$$X \subset \mathbb{R}^n$$

e.g. *Stroud 1971*

Error correction

$$X = S^d$$

e.g. *Delsarte, Goethals, Seidel 1977*

Randomized benchmarking

$$X = \mathrm{U}(d)$$

e.g. *Dankert, Cleve, Emerson, Livine 2006*

State tomography

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Scott 2006*

State distinction

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Ambainis, Emerson 2007*

Shadow tomography

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Huang, Kueng, Preskill 2020*

Why are designs interesting?

$$X = S^d$$

spherical design

$$X = \mathrm{U}(d)$$

unitary design

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

qudit design

Numerical integration

$$X \subset \mathbb{R}^n$$

e.g. *Stroud 1971*

Error correction

$$X = S^d$$

e.g. *Delsarte, Goethals, Seidel 1977*

Randomized benchmarking

$$X = \mathrm{U}(d)$$

e.g. *Dankert, Cleve, Emerson, Livine 2006*

State tomography

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Scott 2006*

State distinction

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Ambainis, Emerson 2007*

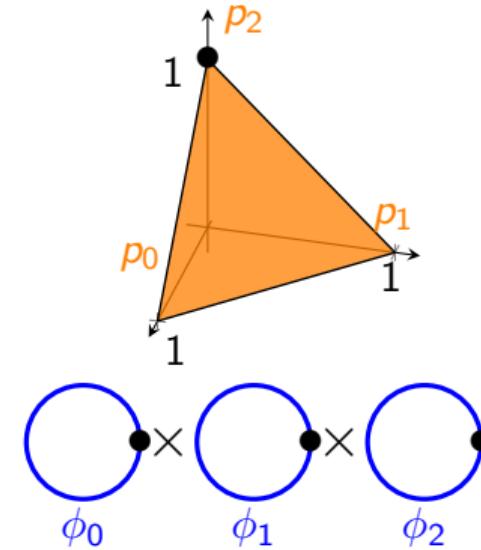
Shadow tomography

$$X = \mathbb{C}\mathbb{P}^{d-1}$$

e.g. *Huang, Kueng, Preskill 2020*

A useful characterization of quantum state designs

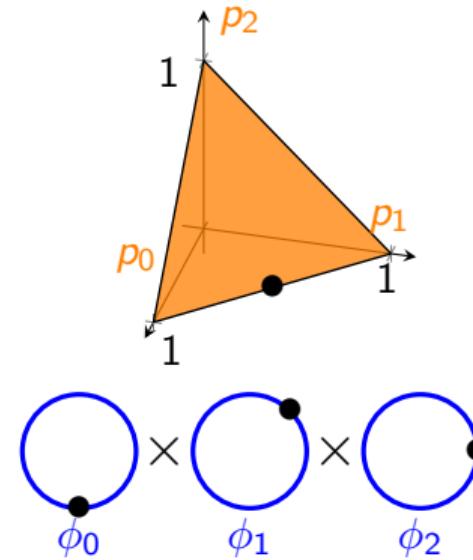
- Consider the parameterization
 $|p, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$



$$\sqrt{p_0} e^{i\phi_0} |0\rangle + \sqrt{p_1} e^{i\phi_1} |1\rangle + \sqrt{p_2} e^{i\phi_2} |2\rangle$$

A useful characterization of quantum state designs

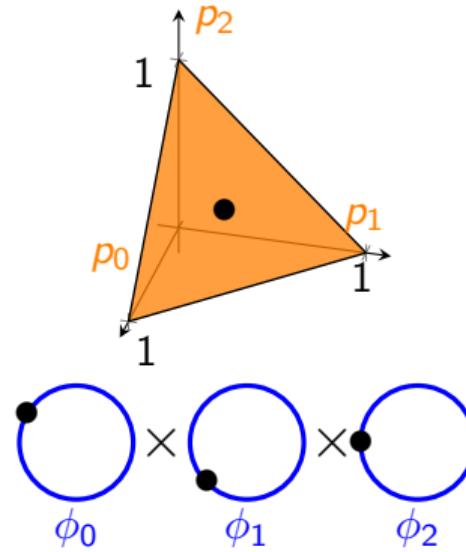
- Consider the parameterization
 $|\rho, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$



$$\sqrt{1/2} e^{i(-\pi/2)} |0\rangle + \sqrt{1/2} e^{i(\pi/4)} |1\rangle + \sqrt{0} e^{i(0)} |2\rangle$$

A useful characterization of quantum state designs

- Consider the parameterization
 $|p, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$



$$\sqrt{1/3} e^{i(5\pi/6)} |0\rangle + \sqrt{1/3} e^{i(-3\pi/4)} |1\rangle + \sqrt{1/3} e^{i(\pi)} |2\rangle$$

A useful characterization of quantum state designs

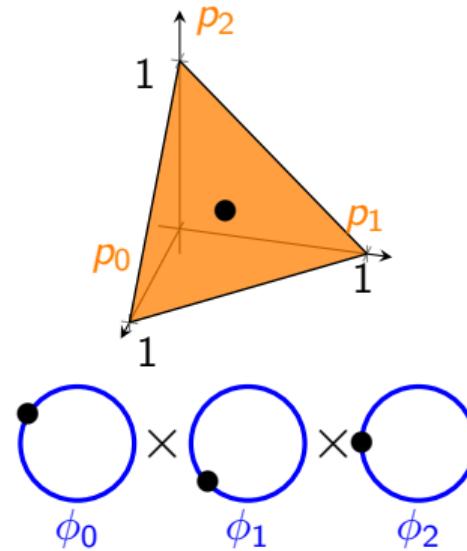
- Consider the parameterization
 $|p, \phi\rangle := \sum_{n=0}^{d-1} \sqrt{p_n} e^{i\phi_n} |n\rangle$

Theorem

A quantum state t -design yields a simplex t -design.

Theorem

A simplex t -design and a torus t -design combine to yield a quantum state t -design.



$$\sqrt{1/3} e^{i(5\pi/6)} |0\rangle + \sqrt{1/3} e^{i(-3\pi/4)} |1\rangle + \sqrt{1/3} e^{i(\pi)} |2\rangle$$

Overview

- 1 Motivation
- 2 Finite dimensions
- 3 Infinite dimensions
- 4 Applications
- 5 Outlook

Non-existence of continuous-variable designs

- For any t , \mathbb{CP}^{d-1} and $U(d)$ t -designs exist Seymour, Zaslavsky (1984)
- For many dimensions, the Clifford group yields a unitary 2-design Graydon *et. al.* (2021)
- Gaussian unitaries (states) **do not** form a CV unitary (state) 2-design Blume-Kohout, Turner (2011)

Non-existence of continuous-variable designs

- For any t , \mathbb{CP}^{d-1} and $\mathrm{U}(d)$ t -designs exist Seymour, Zaslavsky (1984)
- For many dimensions, the Clifford group yields a unitary 2-design Graydon *et. al.* (2021)
- Gaussian unitaries (states) **do not** form a CV unitary (state) 2-design Blume-Kohout, Turner (2011)

Theorem (Our work)

For any $t \geq 2$, continuous-variable state/unitary t -designs **do not** exist.

Rough intuition for the no-go theorem

- In finite dimensions, a quantum state design yields a simplex design
- This carries over to infinite dimensions

Rough intuition for the no-go theorem

- In finite dimensions, a quantum state design yields a simplex design
- This carries over to infinite dimensions
- Roughly, we show that any simplex ($t \geq 2$)-design requires a point “close to” the centroid (uniform probability distribution) $(1/d, \dots, 1/d) \in \Delta^{d-1}$
- The centroid is ill-defined in the $d \rightarrow \infty$ limit

More formally, we use convergence theorems and the *Riesz Weak Compactness Theorem* to show that there does not exist a (signed or unsigned) abstract measure space satisfying the design conditions.

Rough intuition for the no-go theorem

- In finite dimensions, a quantum state design yields a simplex design
- This carries over to infinite dimensions
- Roughly, we show that any simplex ($t \geq 2$)-design requires a point “close to” the centroid (uniform probability distribution) $(1/d, \dots, 1/d) \in \Delta^{d-1}$
- The centroid is ill-defined in the $d \rightarrow \infty$ limit

How do we get around this?

More formally, we use convergence theorems and the *Riesz Weak Compactness Theorem* to show that there does not exist a (signed or unsigned) abstract measure space satisfying the design conditions.

How do we get around the no-go theorem?

- Consider $\mathcal{H} = L^2(\mathbb{R})$ with (Fock) basis $\{|n\rangle \mid n \in \mathbb{N}_0\}$
- Allow ourselves to use non-normalizable states (e.g. homodyne quadrature eigenstates, GKP states, phase states)

How do we get around the no-go theorem?

- Consider $\mathcal{H} = L^2(\mathbb{R})$ with (Fock) basis $\{|n\rangle \mid n \in \mathbb{N}_0\}$
- Allow ourselves to use non-normalizable states (e.g. homodyne quadrature eigenstates, GKP states, phase states)

Example (Fock states plus phase states form a **rigged 2-design**)

$$\{|n\rangle\}_{n \in \mathbb{N}_0} \cup \left\{ |\theta_\varphi\rangle := \sum_{n \in \mathbb{N}_0} e^{i\theta n + i\varphi n^2} |n\rangle \right\}_{\theta, \varphi \in [-\pi, \pi)}$$

- Phase states give us the required non-normalizable centroids!

“Rigged” is a reference to the rigged Hilbert space prescription that is used to formalize the construction

Overview

1 Motivation

2 Finite dimensions

3 Infinite dimensions

4 Applications

5 Outlook

App. 1: Continuous-variable design-based shadow tomography

- Properties of designs ensure that a relatively small number of **qubit shadows** yield a good approximation of a state for estimating observable expectation value

$$S = \begin{cases} 3|0/1\rangle\langle 0/1| - \mathbb{I} \\ 3|\pm\rangle\langle \pm| - \mathbb{I} \\ 3|\pm i\rangle\langle \pm i| - \mathbb{I} \end{cases}$$

$$\mathbb{E}_{S \in \text{shadows}} S = \text{state}$$

- Our phase-state + Fock-state rigged 2-designs yield CV shadows with similar guarantees

$$S = \begin{cases} (2\pi + 1)|\theta_\varphi\rangle\langle \theta_\varphi| - \mathbb{I} \\ (2\pi + 1)|n\rangle\langle n| - \mathbb{I} \end{cases}$$

App. 1: Continuous-variable design-based shadow tomography

- Properties of designs ensure that a relatively small number of **qubit shadows** yield a good approximation of a state for estimating observable expectation value

$$S = \begin{cases} 3|0/1\rangle\langle 0/1| - \mathbb{I} \\ 3|\pm\rangle\langle \pm| - \mathbb{I} \\ 3|\pm i\rangle\langle \pm i| - \mathbb{I} \end{cases}$$

$$\mathbb{E}_{S \in \text{shadows}} S = \text{state}$$

- Our phase-state + Fock-state rigged 2-designs yield CV shadows with similar guarantees

$$S = \begin{cases} (2\pi + 1)|\theta_\varphi\rangle\langle \theta_\varphi| - \mathbb{I} \\ (2\pi + 1)|n\rangle\langle n| - \mathbb{I} \end{cases}$$

Estimate $\text{Tr}(\rho \mathcal{O}_j)$ for a collection $i = j, \dots, M$

Rigged 3-design, $N \sim \log(M) \max_j f(\mathcal{O}_j)$

Rigged 2-design, $N \sim \log(M) \max_j g(\mathcal{O}_j, \rho)$

App. 2: Regularized rigged designs

- Recall that a rigged t -design utilizes non-normalizable states (i.e. tempered distributions)
- Choose a *regularizer* R to normalize non-normalizable states while retaining important features of the design

App. 2: Regularized rigged designs

- Recall that a rigged t -design utilizes non-normalizable states (i.e. tempered distributions)
- Choose a *regularizer* R to normalize non-normalizable states while retaining important features of the design

Example (Hard energy cutoff)

R projects onto a (finite-dimensional) low energy subspace of $L^2(\mathbb{R})$; e.g. $R = \sum_{n=0}^{d-1} |n\rangle\langle n|$

Example (Soft energy cutoff)

R decays with increasing energy, but maintains support on all of $L^2(\mathbb{R})$; e.g. $R = e^{-\beta \hat{h}}$

App. 2: Regularized rigged designs

- Recall that a rigged t -design utilizes non-normalizable states (i.e. tempered distributions)
- Choose a *regularizer* R to normalize non-normalizable states while retaining important features of the design

Example (Hard energy cutoff)

R projects onto a (finite-dimensional) low energy subspace of $L^2(\mathbb{R})$; e.g. $R = \sum_{n=0}^{d-1} |n\rangle\langle n|$

Example (Soft energy cutoff)

R decays with increasing energy, but maintains support on all of $L^2(\mathbb{R})$; e.g. $R = e^{-\beta \hat{h}}$

$$|\theta_\varphi\rangle \propto \sum_{n \in \mathbb{N}_0} e^{i\theta n + i\varphi n^2} |n\rangle \mapsto \frac{1}{\text{norm}} R |\theta_\varphi\rangle \propto \sum_{n \in \mathbb{N}_0} e^{-\beta n + i\theta n + i\varphi n^2} |n\rangle$$

App. 2: Average to entanglement fidelity

$$\bar{F}(\mathcal{E}) = \mathbb{E}_{\psi \in D} \langle \psi | \mathcal{E}(|\psi\rangle\langle\psi|) |\psi \rangle \quad \text{average fidelity}$$

$$F_e(\mathcal{E}) = \langle \phi | (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) |\phi \rangle \quad \text{entanglement fidelity}$$

App. 2: Average to entanglement fidelity

$$\bar{F}(\mathcal{E}) = \mathbb{E}_{\psi \in D} \langle \psi | \mathcal{E}(|\psi\rangle\langle\psi|) |\psi \rangle \quad \text{average fidelity}$$

$$F_e(\mathcal{E}) = \langle \phi | (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) |\phi \rangle \quad \text{entanglement fidelity}$$

FINITE DIMENSIONS

- $D = \mathbb{CP}^{d-1}$ or equivalently $D = 2\text{-design}$
- $|\phi\rangle$ = maximally entangled state
- Beautiful relation *Horodecki et al. (1999)*

$$\bar{F} = \frac{dF_e + 1}{d + 1}$$

App. 2: Average to entanglement fidelity

$$\bar{F}(\mathcal{E}) = \mathbb{E}_{\psi \in D} \langle \psi | \mathcal{E}(|\psi\rangle\langle\psi|) | \psi \rangle \quad \text{average fidelity}$$

$$F_e(\mathcal{E}) = \langle \phi | (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) | \phi \rangle \quad \text{entanglement fidelity}$$

FINITE DIMENSIONS

- $D = \mathbb{C}\mathbb{P}^{d-1}$ or equivalently $D = 2\text{-design}$
- $|\phi\rangle$ = maximally entangled state
- Beautiful relation *Horodecki et al. (1999)*

$$\bar{F} = \frac{dF_e + 1}{d + 1}$$

INFINITE DIMENSIONS

- $D = R\text{-regularized rigged 2-design}$
- $|\phi\rangle$ = two mode squeezed vacuum state
- With $d_R = (\text{Tr } R)^2 / \text{Tr } R^2$,

$$\bar{F} = \frac{d_R F_e + 1}{d_R + 1}$$

Need R invertible

App. 2: Average to entanglement fidelity

$$\bar{F}(\mathcal{E}) = \mathbb{E}_{\psi \in D} \langle \psi | \mathcal{E}(|\psi\rangle\langle\psi|) |\psi \rangle \quad \text{average fidelity}$$

$$F_e(\mathcal{E}) = \langle \phi | (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) |\phi \rangle \quad \text{entanglement fidelity}$$

FINITE DIMENSIONS

- $D = \mathbb{C}\mathbb{P}^{d-1}$ or equivalently $D = 2\text{-design}$
- $|\phi\rangle$ = maximally entangled state
- Beautiful relation *Horodecki et al. (1999)*

$$\bar{F} = \frac{dF_e + 1}{d + 1}$$

When $R = \sum_{n=0}^{d-1} |n\rangle\langle n|$, $d_R = d$

INFINITE DIMENSIONS

- $D = R\text{-regularized rigged 2-design}$
- $|\phi\rangle$ = two mode squeezed vacuum state
- With $d_R = (\text{Tr } R)^2 / \text{Tr } R^2$,

$$\bar{F} = \frac{d_R F_e + 1}{d_R + 1}$$

Need R invertible

App. 2: Average to entanglement fidelity

$$\bar{F}(\mathcal{E}) = \mathbb{E}_{\psi \in D} \langle \psi | \mathcal{E}(|\psi\rangle\langle\psi|) | \psi \rangle \quad \text{average fidelity}$$

$$F_e(\mathcal{E}) = \langle \phi | (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) | \phi \rangle \quad \text{entanglement fidelity}$$

FINITE DIMENSIONS

- $D = \mathbb{C}\mathbb{P}^{d-1}$ or equivalently $D = 2\text{-design}$
- $|\phi\rangle$ = maximally entangled state
- Beautiful relation *Horodecki et al. (1999)*

$$\bar{F} = \frac{dF_e + 1}{d + 1}$$

INFINITE DIMENSIONS

- $D = R\text{-regularized rigged 2-design}$
- $|\phi\rangle$ = two mode squeezed vacuum state
- With $d_R = (\text{Tr } R)^2 / \text{Tr } R^2$,

$$\bar{F} = \frac{d_R F_e + 1}{d_R + 1}$$

Need R invertible

When $R = \sum_{n=0}^{d-1} |n\rangle\langle n|$, $d_R = d$

When $R = e^{-\beta \hat{n}}$, $d_R = 2\text{Tr}(\rho_\beta \hat{n}) + 1$ where ρ_β is the thermal state

Overview

1 Motivation

2 Finite dimensions

3 Infinite dimensions

4 Applications

5 Outlook

Summary

- Continuous-variable (e.g. oscillator) state and unitary t -designs do not exist for any $t \geq 2$
- The reason they do not exist is due to state normalization
- Remove normalization (*i.e.* go to *rigged Hilbert space*) to generate *rigged designs*

Summary

- Continuous-variable (e.g. oscillator) state and unitary t -designs do not exist for any $t \geq 2$
- The reason they do not exist is due to state normalization
- Remove normalization (*i.e.* go to *rigged Hilbert space*) to generate *rigged designs*
- Rigged designs are POVMs *plus a little extra* — allows for shadow tomography
- Regularized rigged designs apply soft-energy cutoff — allows for notions of average fidelity

Future directions

- Find more (multimode) rigged designs, especially $t \geq 3$

Future directions

- Find more (multimode) rigged designs, especially $t \geq 3$
- Experimental protocols for measuring rigged t -design POVMs

Future directions

- Find more (multimode) rigged designs, especially $t \geq 3$
- Experimental protocols for measuring rigged t -design POVMs
- Do any of the optimality arguments from finite-dimensional design-based shadow tomography extend to rigged designs?

Future directions

- Find more (multimode) rigged designs, especially $t \geq 3$
- Experimental protocols for measuring rigged t -design POVMs
- Do any of the optimality arguments from finite-dimensional design-based shadow tomography extend to rigged designs?
- Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let \mathcal{E} be an ensemble of unitaries in $U(L^2(\mathbb{R}))$. \mathcal{E} is an **R -regularized rigged unitary t -design** if for *all* quantum states $|\psi\rangle \in L^2(\mathbb{R})$, $\mathcal{E}|\psi\rangle$ is an R -regularized rigged state t -design.

Future directions

- Find more (multimode) rigged designs, especially $t \geq 3$
- Experimental protocols for measuring rigged t -design POVMs
- Do any of the optimality arguments from finite-dimensional design-based shadow tomography extend to rigged designs?
- Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let \mathcal{E} be an ensemble of unitaries in $U(L^2(\mathbb{R}))$. \mathcal{E} is an **R -regularized rigged unitary t -design** if for *all* quantum states $|\psi\rangle \in L^2(\mathbb{R})$, $\mathcal{E}|\psi\rangle$ is an R -regularized rigged state t -design.

- Extend other finite dimensional design-based techniques to infinite dimensions with rigged designs (e.g. benchmarking continuous-variable devices)

Thanks!

Kunal Sharma

Michael J. Gullans

Victor V. Albert

Additional slides

Sketch of the no-go theorem for $t = 2$

- Projecting to the infinite-dimensional simplex, we find that if a CV 2-design exists, then there exists a σ -finite measure space (X, Σ, μ) and a sequence $(p_i)_{i \in \mathbb{N}_0}$ of measurable maps $p_i: X \rightarrow [0, 1]$ satisfying
 - ▶ $\sum_{i \in \mathbb{N}_0} p_i(x) = 1$ for almost all $x \in X$, and
 - ▶ $\int_X p_a(x)p_b(x) d\mu(x) = \frac{1}{2}(1 + \delta_{ab})$ for any $a, b \in \mathbb{N}_0$
- Riesz Weak Compactness Theorem: there exists a q such that for all $h \in L^2(X)$,
 $\lim_{a \rightarrow \infty} \int_X p_a h d\mu = \int_X q h d\mu$
- Lebesgue Dominated Convergence Theorem: $\lim_{a \rightarrow \infty} \int_X p_a p_b p_c d\mu = 0$; implies that $q = 0$ a.e.
- Therefore, $\lim_{a \rightarrow \infty} \int_X p_a p_b d\mu = 0 \neq \lim_{a \rightarrow \infty} \frac{1}{2}(1 + \delta_{ab}) = \frac{1}{2}$

Regularized rigged unitary design

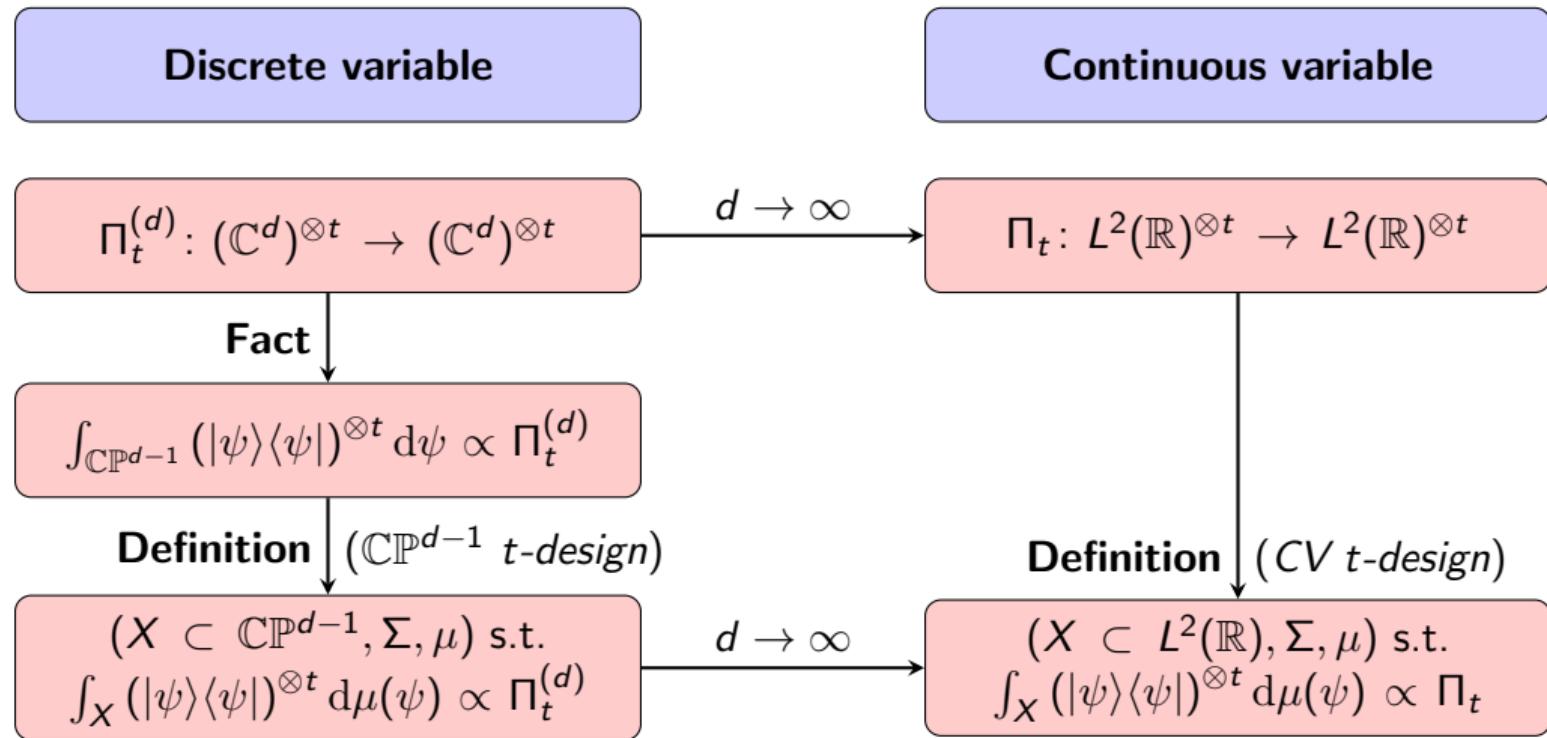
Definition ($U(d)$ t -design)

Let \mathcal{E} be an ensemble of unitaries in $U(d)$. \mathcal{E} is a **unitary t -design** if for *all* quantum states $|\psi\rangle \in \mathbb{CP}^{d-1}$, $\mathcal{E}|\psi\rangle$ is a quantum state t -design.

Definition (Regularized rigged unitary design)

Let \mathcal{E} be an ensemble of unitaries in $U(L^2(\mathbb{R}))$. \mathcal{E} is an **R -regularized rigged unitary t -design** if for *all* quantum states $|\psi\rangle \in L^2(\mathbb{R})$, $\mathcal{E}|\psi\rangle$ is an R -regularized rigged state t -design.

Discrete to continuous-variable



Continuous-variable to rigged

