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Use cases of infinite dimensions

Continuous-variable systems are useful in
technologies necessary for communication and
computation

Offers some advantages over finite-dimensional
spaces

▶ Continuous-parameter families of transversal
gates (Eastin-Knill no-go in DV)

▶ Hamiltonian-based bias-preserving gates
(no-go in DV)

▶ See review V. V. Albert, arXiv:2211.05714
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Rough discrete & continuous variable analogies

discrete (finite) continuous (infinite)

qudit oscillator

Pauli group generated by {X ,Z} displacements generated by {eix̂ , eip̂}

stabilizer states Gaussian states Gross (2006)

Clifford group Gaussian operations

Pauli/Clifford channels Gaussian channels

Pauli measurements homodyne measurements

state tomography Wigner function

stabilizer/Clifford 2*-design Gaussian states/operations NOT 2-design

Blume−Kohout,
Turner 2011*: For prime dimensions, Graydon et. al. (2021)
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What is a t-design?
∫︀
hard space(deg t poly) =

∫︀
easier space(deg t poly)

Let X ⊂ R2 be the triangle with vertices
(0, 0), (1, 0), (0, 1)

Let 𝒟 = {(0, 1/2), (1/2, 0), (1/2, 1/2)} ⊂ X

𝒟 is a 2-design for X

If g(x , y) = ax2 + by2 + cxy + dx + ey + f , then

1

6

∑︁
(x ,y)∈𝒟

g(x , y) =

∫︁
X
g(x , y)dx dy

0 1

0

1

x

y

J. T. Iosue et al. (UMD) CV state designs Finite dimensions 6 / 19



What is a t-design?
∫︀
hard space(deg t poly) =

∫︀
easier space(deg t poly)

Let X ⊂ R2 be the triangle with vertices
(0, 0), (1, 0), (0, 1)

Let 𝒟 = {(0, 1/2), (1/2, 0), (1/2, 1/2)} ⊂ X

𝒟 is a 2-design for X

If g(x , y) = ax2 + by2 + cxy + dx + ey + f , then

1

6

∑︁
(x ,y)∈𝒟

g(x , y) =

∫︁
X
g(x , y)dx dy

0 1

0

1

• •

•

x

y

J. T. Iosue et al. (UMD) CV state designs Finite dimensions 6 / 19



What is a t-design?
∫︀
hard space(deg t poly) =

∫︀
easier space(deg t poly)

Let X ⊂ R2 be the triangle with vertices
(0, 0), (1, 0), (0, 1)

Let 𝒟 = {(0, 1/2), (1/2, 0), (1/2, 1/2)} ⊂ X

𝒟 is a 2-design for X

If g(x , y) = ax2 + by2 + cxy + dx + ey + f , then

1

6

∑︁
(x ,y)∈𝒟

g(x , y) =

∫︁
X
g(x , y) dx dy

0 1

0

1

• •

•

x

y

J. T. Iosue et al. (UMD) CV state designs Finite dimensions 6 / 19



Why are designs interesting?

X = Sd X = U(d) X = CPd−1

spherical design unitary design qudit design

Numerical integration X ⊂ Rn e.g. Stroud 1971

Error correction X = Sd e.g. Delsarte, Goethals, Seidel 1977

Randomized benchmarking X = U(d) e.g. Dankert, Cleve, Emerson, Livine 2006

State tomography X = CPd−1 e.g. Scott 2006

State distinction X = CPd−1 e.g. Ambainis, Emerson 2007

Shadow tomography X = CPd−1 e.g. Huang, Kueng, Preskill 2020
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A useful characterization of quantum state designs

Consider the parameterization
|p, 𝜑⟩ :=

∑︀d−1
n=0

√
pn e

i𝜑n |n⟩

Theorem

A quantum state t-design yields a
simplex t-design.

Theorem

A simplex t-design and a torus
t-design combine to yield a quantum
state t-design.

1

1

1 •

p0
p1

p2

𝜑0

×
𝜑1

×
𝜑2

• • •

√
0 ei(0)|0⟩+

√
0 ei(0)|1⟩+

√
1 ei(0)|2⟩
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Non-existence of continuous-variable designs

For any t, CPd−1 and U(d) t-designs exist Seymour,
Zaslavsky (1984)

For many dimensions, the Clifford group yields a unitary 2-design Graydon et. al. (2021)

Gaussian unitaries (states) do not form a CV unitary (state) 2-design Blume−Kohout,
Turner (2011)

Theorem (Our work)

For any t ≥ 2, continuous-variable state/unitary t-designs do not exist.
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Rough intuition for the no-go theorem

In finite dimensions, a quantum state design yields a simplex design

This carries over to infinite dimensions

Roughly, we show that any simplex (t ≥ 2)-design requires a point “close to” the centroid
(uniform probability distribution) (1/d , . . . , 1/d) ∈ Δd−1

The centroid is ill-defined in the d → ∞ limit

How do we get around this?

More formally, we use convergence theorems and the Riesz Weak Compactness Theorem to show that there
does not exist a (signed or unsigned) abstract measure space satisfying the design conditions.
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How do we get around the no-go theorem?

Consider ℋ = L2(R) with (Fock) basis {|n⟩ | n ∈ N0}

Allow ourselves to use non-normalizable states (e.g. homodyne quadrature eigenstates,
GKP states, phase states)

Example (Fock states plus phase states form a rigged 2-design)

{|n⟩}n∈N0
∪
{︂
|𝜃𝜙⟩ :=

∑︁
n∈N0

ei𝜃n+i𝜙n2 |n⟩
}︂
𝜃,𝜙∈[−𝜋,𝜋)

Phase states give us the required non-normalizable centroids!

“Rigged” is a reference to the rigged Hilbert space prescription that is used to formalize the construction
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App. 1: Continuous-variable design-based shadow tomography

Properties of designs ensure that a
relatively small number of qubit shadows
yield a good approximation of a state for
estimating observable expectation value

S =

⎧⎪⎨⎪⎩
3 |0/1⟩⟨0/1| − I
3 |±⟩⟨±| − I
3 |±i⟩⟨±i| − I

Our phase-state + Fock-state rigged
2-designs yield CV shadows with similar
guarantees

S =

{︃
(2𝜋 + 1) |𝜃𝜙⟩⟨𝜃𝜙| − I
(2𝜋 + 1) |n⟩⟨n| − I

E
S∈shadows

S = state

Estimate Tr(𝜌𝒪j) for a collection i = j , . . . ,M

Rigged 3-design, N ∼ log(M)maxj f (𝒪j)

Rigged 2-design, N ∼ log(M)maxj g(𝒪j , 𝜌)
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App. 2: Regularized rigged designs

Recall that a rigged t-design utilizes non-normalizable states (i.e. tempered distributions)

Choose a regularizer R to normalize non-normalizable states while retaining important
features of the design

Example (Hard energy cutoff)

R projects onto a (finite-dimensional) low energy subspace of L2(R); e.g. R =
∑︀d−1

n=0 |n⟩⟨n|

Example (Soft energy cutoff)

R decays with increasing energy, but maintains support on all of L2(R); e.g. R = e−𝛽n̂

|𝜃𝜙⟩ ∝
∑︁
n∈N0

ei𝜃n+i𝜙n2 |n⟩ ↦→ 1

norm
R |𝜃𝜙⟩ ∝

∑︁
n∈N0

e−𝛽n+i𝜃n+i𝜙n2 |n⟩
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App. 2: Average to entanglement fidelity

F̄ (ℰ) = E
𝜓∈D

⟨𝜓| ℰ(|𝜓⟩⟨𝜓|) |𝜓⟩ average fidelity

Fe(ℰ) = ⟨𝜑| (ℐ ⊗ ℰ)(|𝜑⟩⟨𝜑|) |𝜑⟩ entanglement fidelity

Finite dimensions

D = CPd−1 or equivalently D = 2-design

|𝜑⟩ = maximally entangled state

Beautiful relation Horodecki×3 (1999)

F̄ =
dFe + 1

d + 1

Infinite dimensions

D = R-regularized rigged 2-design

|𝜑⟩ = two mode squeezed vacuum state

With dR = (TrR)2/TrR2,

F̄ =
dRFe + 1

dR + 1

Need R invertible
When R =

∑︀d−1
n=0 |n⟩⟨n|, dR = d

When R = e−𝛽n̂, dR = 2Tr(𝜌𝛽 n̂) + 1 where 𝜌𝛽 is the thermal state
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Summary

Continuous-variable (e.g. oscillator) state and unitary t-designs do not exist for any t ≥ 2

The reason they do not exist is due to state normalization

Remove normalization (i.e. go to rigged Hilbert space) to generate rigged designs

Rigged designs are POVMs plus a little extra — allows for shadow tomography

Regularized rigged designs apply soft-energy cutoff — allows for notions of average fidelity
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Future directions

Find more (multimode) rigged designs, especially t ≥ 3

Experimental protocols for measuring rigged t-design POVMs

Do any of the optimality arguments from finite-dimensional design-based shadow
tomography extend to rigged designs?

Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let ℰ be an ensemble of unitaries in U(L2(R)). ℰ is an R-regularized rigged unitary
t-design if for all quantum states |𝜓⟩ ∈ L2(R), ℰ |𝜓⟩ is an R-regularized rigged state t-design.

Extend other finite dimensional design-based techniques to infinite dimensions with rigged
designs (e.g. benchmarking continuous-variable devices)

J. T. Iosue et al. (UMD) CV state designs Outlook 19 / 19



Future directions

Find more (multimode) rigged designs, especially t ≥ 3

Experimental protocols for measuring rigged t-design POVMs

Do any of the optimality arguments from finite-dimensional design-based shadow
tomography extend to rigged designs?

Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let ℰ be an ensemble of unitaries in U(L2(R)). ℰ is an R-regularized rigged unitary
t-design if for all quantum states |𝜓⟩ ∈ L2(R), ℰ |𝜓⟩ is an R-regularized rigged state t-design.

Extend other finite dimensional design-based techniques to infinite dimensions with rigged
designs (e.g. benchmarking continuous-variable devices)

J. T. Iosue et al. (UMD) CV state designs Outlook 19 / 19



Future directions

Find more (multimode) rigged designs, especially t ≥ 3

Experimental protocols for measuring rigged t-design POVMs

Do any of the optimality arguments from finite-dimensional design-based shadow
tomography extend to rigged designs?

Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let ℰ be an ensemble of unitaries in U(L2(R)). ℰ is an R-regularized rigged unitary
t-design if for all quantum states |𝜓⟩ ∈ L2(R), ℰ |𝜓⟩ is an R-regularized rigged state t-design.

Extend other finite dimensional design-based techniques to infinite dimensions with rigged
designs (e.g. benchmarking continuous-variable devices)

J. T. Iosue et al. (UMD) CV state designs Outlook 19 / 19



Future directions

Find more (multimode) rigged designs, especially t ≥ 3

Experimental protocols for measuring rigged t-design POVMs

Do any of the optimality arguments from finite-dimensional design-based shadow
tomography extend to rigged designs?

Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let ℰ be an ensemble of unitaries in U(L2(R)). ℰ is an R-regularized rigged unitary
t-design if for all quantum states |𝜓⟩ ∈ L2(R), ℰ |𝜓⟩ is an R-regularized rigged state t-design.

Extend other finite dimensional design-based techniques to infinite dimensions with rigged
designs (e.g. benchmarking continuous-variable devices)

J. T. Iosue et al. (UMD) CV state designs Outlook 19 / 19



Future directions

Find more (multimode) rigged designs, especially t ≥ 3

Experimental protocols for measuring rigged t-design POVMs

Do any of the optimality arguments from finite-dimensional design-based shadow
tomography extend to rigged designs?

Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let ℰ be an ensemble of unitaries in U(L2(R)). ℰ is an R-regularized rigged unitary
t-design if for all quantum states |𝜓⟩ ∈ L2(R), ℰ |𝜓⟩ is an R-regularized rigged state t-design.

Extend other finite dimensional design-based techniques to infinite dimensions with rigged
designs (e.g. benchmarking continuous-variable devices)

J. T. Iosue et al. (UMD) CV state designs Outlook 19 / 19



Thanks!

Kunal Sharma Michael J. Gullans Victor V. Albert



Additional slides



Sketch of the no-go theorem for t = 2

Projecting to the infinite-dimensional simplex, we find that if a CV 2-design exists, then
there exists a 𝜎-finite measure space (X ,Σ, 𝜇) and a sequence (pi )i∈N0 of measurable
maps pi : X → [0, 1] satisfying

▶
∑︀

i∈N0
pi (x) = 1 for almost all x ∈ X , and

▶
∫︀
X
pa(x)pb(x)d𝜇(x) =

1
2 (1 + 𝛿ab) for any a, b ∈ N0

Riesz Weak Compactness Theorem: there exists a q such that for all h ∈ L2(X ),
lima→∞

∫︀
X pah d𝜇 =

∫︀
X qh d𝜇

Lebesgue Dominated Convergence Theorem: lima→∞
∫︀
X papbpc d𝜇 = 0; implies that

q = 0 a.e.

Therefore, lima→∞
∫︀
X papb d𝜇 = 0 ̸= lima→∞

1
2(1 + 𝛿ab) =

1
2
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Regularized rigged unitary design

Definition (U(d) t-design)

Let ℰ be an ensemble of unitaries in U(d). ℰ is a unitary t-design if for all quantum states
|𝜓⟩ ∈ CPd−1, ℰ |𝜓⟩ is a quantum state t-design.

Definition (Regularized rigged unitary design)

Let ℰ be an ensemble of unitaries in U(L2(R)). ℰ is an R-regularized rigged unitary
t-design if for all quantum states |𝜓⟩ ∈ L2(R), ℰ |𝜓⟩ is an R-regularized rigged state t-design.
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Discrete to continuous-variable

Discrete variable Continuous variable

Π
(d)
t : (Cd)⊗t → (Cd)⊗t

∫︀
CPd−1 (|𝜓⟩⟨𝜓|)⊗t d𝜓 ∝ Π

(d)
t

(X ⊂ CPd−1,Σ, 𝜇) s.t.∫︀
X (|𝜓⟩⟨𝜓|)⊗t d𝜇(𝜓) ∝ Π

(d)
t

Πt : L
2(R)⊗t → L2(R)⊗t

(X ⊂ L2(R),Σ, 𝜇) s.t.∫︀
X (|𝜓⟩⟨𝜓|)⊗t d𝜇(𝜓) ∝ Πt

Fact

Definition (CPd−1 t-design) Definition (CV t-design)

d → ∞

d → ∞
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Continuous-variable to rigged

Continuous variable Rigged

Πt : L
2(R)⊗t → L2(R)⊗t

(X ⊂ L2(R),Σ, 𝜇) s.t.∫︀
X (|𝜓⟩⟨𝜓|)⊗t d𝜇(𝜓) ∝ Πt

Πt : S(R)⊗t → S(R)⊗t

(X ⊂ S(R)′,Σ, 𝜇) s.t.∫︀
X (|𝜒⟩⟨𝜒|)⊗t d𝜇(𝜒) ∝ Πt

Definition (CV t-design) Definition (Rigged t-design)
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