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Use cases of infinite dimensions

@ Continuous-variable systems are useful in
technologies necessary for communication and
computation

o Offers some advantages over finite-dimensional
spaces
» Continuous-parameter families of transversal
gates (Eastin-Knill no-go in DV)
» Hamiltonian-based bias-preserving gates
(no-go in DV)
» See review V. V. Albert, arXiv:2211.05714
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Rough discrete & continuous variable analogies

discrete (finite) continuous (infinite)

qudit oscillator

Pauli group generated by {X, Z} displacements generated by {e'¥, e}
stabilizer states Gaussian states Gross (2006)

Clifford group Gaussian operations

Pauli/Clifford channels Gaussian channels

Pauli measurements homodyne measurements

state tomography Wigner function

stabilizer/Clifford 2*-design Gaussian states/operations NOT 2-design

Blume—Kohout,
*: For prime dimensions, Graydon et. al. (2021) Turner 2011
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Overview

@ Finite dimensions
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What is a t-design? [, . space(deg t poly) = Josior space(deg t poly)

o Let X C R? be the triangle with vertices 1
(0,0), (1,0), (0,1)
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What is a t-design? [, . space(deg t poly) = Josior space(deg t poly)

o Let X C R? be the triangle with vertices 10
(0,0), (1,0), (0,1)

o Let D = {(0,1/2),(1/2,0),(1/2,1/2)} C X

S
D is a 2-design for X
If g(x,y) = ax?® + by? + cxy + dx + ey + f, then
1 of :
- Y. gloy) = / g(x,y)dxdy | w
(x.y)ED X 0 1
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Why are designs interesting?

X =59

X =U(d) X = Cpa-1

spherical design unitary design qudit design

Numerical integration
Error correction
Randomized benchmarking
State tomography

State distinction

Shadow tomography

J. T. losue et al. (UMD)

X CR"? e.g. Stroud 1971

X =51 e.g. Delsarte, Goethals, Seidel 1977

X =1U(d) e.g. Dankert, Cleve, Emerson, Livine 2006
X =CPI! eg Scott 2006

X = CP! eg. Ambainis, Emerson 2007

X =CP9"! eg Huang, Kueng, Preskill 2020
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A useful characterization of quantum state designs

o Consider the parameterization

d— 1
|P7 ¢> = Z Pn efn |n>

J. T. losue et al. (UMD)

QOO

b0 ¢1 @2

V06 (9]0)+1/0 i ]1) 4-+/1 1(0]2)
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A useful characterization of quantum state designs

@ Consider the parameterization

’pv ¢> = Zg;é Pne€

J. T. losue et al. (UMD)

)

OO0

o o1 ®2

\/1/2e(=m/210) 41 /1/2 617/ [1) 4+4/0 619 |2)
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A useful characterization of quantum state designs

P2
o Consider the parameterization 1
’P, ¢> = Zg;é Pn elfn ‘n>

1

Po 1
1

OO
on) ¢1 b2

\/1/3€l67/0)|0Y 41 /1/3l(=37/9)|1) 4, /1 /3 l(7)]2)
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A useful characterization of quantum state designs

o Consider the parameterization 1

|0, 8) = 30_4 \/Pn e |n)

Theorem

A quantum state t-design yields a 1
simplex t-design.

) 1
Theorem O X Q XO
A simplex t-design and a torus b0 ¢1 ®2

t-design combine to yield a quantum
state t-design.

/ ei(57r/6)|0>+ / ei(737r/4)|1>+ / ei(ﬂ')|2>
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Overview

© Infinite dimensions
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Non-existence of continuous-variable designs

o For any t, CP?~! and U(d) t-designs exist Zasliiﬁfgo‘ﬁ’%ll)
@ For many dimensions, the Clifford group yields a unitary 2-design Graydon et. al. (2021)

e Gaussian unitaries (states) do not form a CV unitary (state) 2-design B-,'-Ll'jrr':]:}ggflu)t
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Non-existence of continuous-variable designs

o For any t, CP?~! and U(d) t-designs exist Zasliiﬁgo‘ﬁ’gm)
@ For many dimensions, the Clifford group yields a unitary 2-design Graydon et. al. (2021)

e Gaussian unitaries (states) do not form a CV unitary (state) 2-design B-:-ﬂrr':]i:}ggfi‘)t

Theorem (Our work)

For any t > 2, continuous-variable state/unitary t-designs do not exist.

J. T. losue et al. (UMD) CV state designs Infinite dimensions 10/19



Rough intuition for the no-go theorem

@ In finite dimensions, a quantum state design yields a simplex design

@ This carries over to infinite dimensions
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Rough intuition for the no-go theorem

@ In finite dimensions, a quantum state design yields a simplex design

@ This carries over to infinite dimensions

@ Roughly, we show that any simplex (t > 2)-design requires a point “close to” the centroid
(uniform probability distribution) (1/d,...,1/d) € A1

@ The centroid is ill-defined in the d — oo limit

More formally, we use convergence theorems and the Riesz Weak Compactness Theorem to show that there
does not exist a (signed or unsigned) abstract measure space satisfying the design conditions.
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Rough intuition for the no-go theorem

@ In finite dimensions, a quantum state design yields a simplex design

@ This carries over to infinite dimensions

@ Roughly, we show that any simplex (t > 2)-design requires a point “close to” the centroid
(uniform probability distribution) (1/d,...,1/d) € A1

@ The centroid is ill-defined in the d — oo limit

How do we get around this?

More formally, we use convergence theorems and the Riesz Weak Compactness Theorem to show that there
does not exist a (signed or unsigned) abstract measure space satisfying the design conditions.
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How do we get around the no-go theorem?

e Consider H = L?(R) with (Fock) basis {|n) | n € No}

@ Allow ourselves to use non-normalizable states (e.g. homodyne quadrature eigenstates,
GKP states, phase states)
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How do we get around the no-go theorem?

o Consider H = L2(R) with (Fock) basis {|n) | n € No}
@ Allow ourselves to use non-normalizable states (e.g. homodyne quadrature eigenstates,

GKP states, phase states)

Example (Fock states plus phase states form a rigged 2-design)

iOn-ipn?
{1} er, U { 6,) = 3 et |n>}
07906[_71’771-)

neNp

@ Phase states give us the required non-normalizable centroids!

“Rigged"” is a reference to the rigged Hilbert space prescription that is used to formalize the construction
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App. 1: Continuous-variable design-based shadow tomography

@ Properties of designs ensure that a
relatively small number of qubit shadows
yield a good approximation of a state for
estimating observable expectation value

Séeshadows

310/1)(0/1] -1
3|) (%] — I
3 i) (] — I

S =

J. T. losue et al. (UMD)

CV state designs

@ Our phase-state + Fock-state rigged
2-designs yield CV shadows with similar

guarantees

{

S = state
(2r +1) |‘9¢><9<p| -1
(2 + 1) |n){(n| =1
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App. 1: Continuous-variable design-based shadow tomography

@ Properties of designs ensure that a
relatively small number of qubit shadows
yield a good approximation of a state for
estimating observable expectation value

@ Our phase-state + Fock-state rigged
2-designs yield CV shadows with similar

guarantees

: s, S = state
g CSHiEy
3|+i) (i -1 Cre il

Estimate Tr(pO;) for a collection i = j, ...
Rigged 3-design, N ~ log(M) max; f(O;)
Rigged 2-design, N ~ log(M) max; g(Oj, p)

M
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App. 2: Regularized rigged designs

@ Recall that a rigged t-design utilizes non-normalizable states (i.e. tempered distributions)

@ Choose a regularizer R to normalize non-normalizable states while retaining important
features of the design
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App. 2: Regularized rigged designs

@ Recall that a rigged t-design utilizes non-normalizable states (i.e. tempered distributions)

@ Choose a regularizer R to normalize non-normalizable states while retaining important
features of the design

Example (Hard energy cutoff)

R projects onto a (finite-dimensional) low energy subspace of L?(R); eg. R = Zg;é n)(n|

Example (Soft energy cutoff)

R decays with increasing energy, but maintains support on all of L2(R); e.g. R = e~ /#
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features of the design

Example (Hard energy cutoff)

R projects onto a (finite-dimensional) low energy subspace of L?(R); eg. R = Zg;é n)(n|

Example (Soft energy cutoff)

R decays with increasing energy, but maintains support on all of L2(R); e.g. R = e~ /#

1

Ot 2 B0 n o2
|0<p> ~ Z en‘)nJrlcpn ’n> s R|0<,0> o Z efdn+19n+1¢n |I'I>
neNo norm neNo
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App. 2: Average to entanglement fidelity

F(&) = E (WIE() WD) average fidelity
Fe(€) = (ol (Z @ E)(|¢)(#]) |¢) entanglement fidelity
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App. 2: Average to entanglement fidelity

F(&) = E (WIE() WD) average fidelity
Fe(€) = (ol (Z @ E)(|¢)(#]) |¢) entanglement fidelity

FINITE DIMENSIONS
o D = CPY! or equivalently D = 2-design

@ |¢) = maximally entangled state

@ Beautiful relation Horodeckix3 (1999)

dFe +1

F—
dri
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App. 2: Average to entanglement fidelity

F(&) = E (WIE() WD) average fidelity

Fe(E) = (9| (Z@E)(|9p){(#]) |¢) entanglement fidelity

FINITE DIMENSIONS INFINITE DIMENSIONS
o D = CPY! or equivalently D = 2-design ® D = R-regularized rigged 2-design
@ |p) = maximally entangled state @ |p) = two mode squeezed vacuum state
@ Beautiful relation Horodeckix3 (1999) e With dg = (TrR)?/ Tr R?,
l_=:dFe+1 I_::dRFe+1
d+1 drp +1

Need R invertible

When R = 37~ [n)(n|, dr = d

When R = e 7" dgr = 2Tr(psh) + 1 where pg is the thermal state
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Overview

© Outlook
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Summary

e Continuous-variable (e.g. oscillator) state and unitary t-designs do not exist for any t > 2
@ The reason they do not exist is due to state normalization

@ Remove normalization (i.e. go to rigged Hilbert space) to generate rigged designs
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Summary

e Continuous-variable (e.g. oscillator) state and unitary t-designs do not exist for any t > 2

The reason they do not exist is due to state normalization

@ Remove normalization (i.e. go to rigged Hilbert space) to generate rigged designs

Rigged designs are POVMs plus a little extra — allows for shadow tomography

Regularized rigged designs apply soft-energy cutoff — allows for notions of average fidelity
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Future directions

e Find more (multimode) rigged designs, especially t > 3
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Future directions

e Find more (multimode) rigged designs, especially t > 3
@ Experimental protocols for measuring rigged t-design POVMs

@ Do any of the optimality arguments from finite-dimensional design-based shadow
tomography extend to rigged designs?

o Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let £ be an ensemble of unitaries in U(L?(R)). £ is an R-regularized rigged unitary
t-design if for all quantum states |¢)) € L2(R), € |+)) is an R-regularized rigged state t-design.
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Future directions

e Find more (multimode) rigged designs, especially t > 3
@ Experimental protocols for measuring rigged t-design POVMs

@ Do any of the optimality arguments from finite-dimensional design-based shadow
tomography extend to rigged designs?

o Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let £ be an ensemble of unitaries in U(L?(R)). £ is an R-regularized rigged unitary
t-design if for all quantum states |¢)) € L2(R), € |+)) is an R-regularized rigged state t-design.

@ Extend other finite dimensional design-based techniques to infinite dimensions with rigged
designs (e.g. benchmarking continuous-variable devices)
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Kunal Sharma Michael J. Gullans Victor V. Albert
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Sketch of the no-go theorem for t = 2

@ Projecting to the infinite-dimensional simplex, we find that if a CV 2-design exists, then
there exists a o-finite measure space (X, X, 1) and a sequence (pj)icn, of measurable
maps p;: X — [0, 1] satisfying

> > ien, Pi(x) =1 for almost all x € X, and
> fx pa(X)pb(X) dM(X) = %(1 + 5ab) for any a, b € No

@ Riesz Weak Compactness Theorem: there exists a g such that for all h € L?(X),
lim, 00 fX pahdp = fX ghdp

@ Lebesgue Dominated Convergence Theorem: lim,_ .o fx PaPppe du = 0; implies that
g=20a.e.

@ Therefore, lim,_ oo fX Pappdp =0 # lim,_oo %(1 + ) = %
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Regularized rigged unitary design

Definition (U(d) t-design)

Let £ be an ensemble of unitaries in U(d). £ is a unitary t-design if for all quantum states
[4) € CP971, £|¢) is a quantum state t-design.

Definition (Regularized rigged unitary design)

Let £ be an ensemble of unitaries in U(L?(R)). & is an R-regularized rigged unitary
t-design if for all quantum states |¢) € L2(R), £|¢) is an R-regularized rigged state t-design.
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Discrete to continuous-variable

Discrete variable

i (©d)et —» ()

Fact

Jepa-r (1) (¥

d
) dyp o MY

Definition

(CPY=1 t-design)

(X c CPI7L % 1) st
Jx (1) ()t du(e) oc NP

J. T. losue et al. (UMD)

d — o

d — o

CV state designs

Continuous variable

Me: L2(R)®F — [2(R)®*

Definition | (CV t-design)

(X C [2(R),X, ) st.
Jx (1) ()" dua(9p) oc Mg

|
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Continuous-variable to rigged

‘ Continuous variable Rigged ’

| |
{ Me: [2(R)®t — [2(R)®t J—{ Me: S(R)®E — S(R)® }

Definition | (CV t-design) Definition | (Rigged t-design)

(X C L2(R),%,p) st (X c S(R), X, u) s.t.
Jx () (@) du(y) o My Jx (OO dulx) o My
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