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Outer-loop optimization for a QAOA [1]

We will use the P5 Ising problem [2] as an ongoing example. The goal is to maximize H

given a planar graph ¢ = (V,E).
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Using a p' level QAOA, the goal then is to find

maxg, C(B,7)
where
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The landscape of € has many local optima, making it difficult to optimize and highly
dependent on the initial choice of angles. One of the reasons that C is so hard to
optimize is because of the difficulty of computing gradients and hessians of QAOA
circuits, restricting us to gradient-free minimization methods that have slower
convergence rates and worse overall performance. Most gradient-free minimization
methods have only heuristic tendencies rather than performance guarantees. Consider,
for example, the many local optima that various optimizers find in Fig 1. As system size
increases, the spectral landscape becomes increasingly complex. As shown to the right,
finding the global optima at p = 1 tends to give good results for larger p, thus a heuristic
that avoids local optima at small p is needed.
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Fig: 1. Dependence of maximation on initial angles, forp = 1.

gPowell method

Often SciPy [3] minimization methods are used for the outer-loop parameter
optimization for a QAOA. We have found their performance to vary dramatically
depending on the initial angles provided, even at p = 1. We introduce a minimization
method called gPowell that is a bounded variant of the Powell method [4]. We have
found in all cases we tested that gPowell will converge to the global optima regardless of
the initial angles provided for QAOA at p = 1. We tested all other SciPy minimization
methods and found that none of them had this property. Fig 1 shows the distribution of
the QAOA expectation value for the P5 Ising problem on a 4x4 planar graph when
sweeping through parameter space for the initial conditions for various SciPy methods
as well as gPowell. Notice that gPowell find the global optima every time.

The gPowell method is a conjugate direction method in which angles are restricted to be
inside the hypercube in parameter space with side length 2r. At each iteration, there is a
set of directions in parameter space. The minimizer will perform a line search along each
direction individually to locate the optima along that direction. After each iteration, the
directions are updated based on the previous update steps.

Fig 2 shows the path that the angle parameters take through an example P5 Isingp = 1
QAOA landscape when starting from the same initial conditions. Notice that gPowell
does not get caught in the same local optima that COBYLA finds because the bounded
line search is able to find a better optima.

A possible extension to gPowell is restricting the bounding hypercube more by using
information about optimal angle tendencies as a function of index and p.
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Fig: 3. Note that our method is

consistent, but this is just one of
many possible outcomes for the
standard method.

Fig: 2. Example gPowell vs
COBYLA parameter path

Interpolation method [5]

The standard method for a QAOA is initializing 2p random angles and optimizing with a
gradient-free minimization method. However, this method is highly dependent on the
chosen initial angles and therefore returns inconsistent results as the number of qubits
increases. Recently, an initialization strategy has been proposed in [5] that gives a
heuristically good guess for the angles for QAOA at level p given an optimized QAOA
circuit at level p-1. It is based on the observation that the angles tend to be smooth
functions of their index, and therefore interpolating 2p — 2 angles to 2p tends to be a
good starting point. By using gPowell at level p = 1, and then initializing the starting
angles at each subsequent level with the interpolation method, we find consistent results
that are independent of the two initial chosen angles.

Figs 3 and 4 show this method versus the standard method for various P5 Ising
instances, and Fig 4 includes elementary noise simulation using the noise model shown
In Fig 5.

p=>5
10 N e e e e e ey &’§’§$’&’$’$mmmm,mTm’TmTmTTmmmmmmnmmmmm,m,m,,, o,
—&— Our method
«¥+ QOur method: noisy
0.8 - —8— Standard method
E -+ Standard method: noisy
=
0 0.6 -
o
Q
h
o 0.4 -
U
U
=3
wn
0.2
0.0

6 8 10 12 14
number of qubits

Fig: 4. Success probability as a function of qubits for p = 5 QAOA. The probabilities are averaged over
many graph instances.
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Fig: 5. The QAOA circuit with a noise model used in our simulations. Z; and X, corresponds to
applying a Z or X gate respectively with probability A. Throughout the report, we use A = 0.005.
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