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Often SciPy [3] minimization methods are used for the outer-loop parameter 
optimization for a QAOA. We have found their performance to vary dramatically 
depending on the initial angles provided, even at 𝑝 = 1. We introduce a minimization 
method called qPowell that is a bounded variant of the Powell method [4]. We have 
found in all cases we tested that qPowell will converge to the global optima regardless of 
the initial angles provided for QAOA at 𝑝 = 1. We tested all other SciPy minimization 
methods and found that none of them had this property. Fig 1 shows the distribution of 
the QAOA expectation value for the P5 Ising problem on a 4x4 planar graph when 
sweeping through parameter space for the initial conditions for various SciPy methods 
as well as qPowell. Notice that qPowell find the global optima every time.

The qPowell method is a conjugate direction method in which angles are restricted to be 
inside the hypercube in parameter space with side length 2𝜋. At each iteration, there is a 
set of directions in parameter space. The minimizer will perform a line search along each 
direction individually to locate the optima along that direction. After each iteration, the 
directions are updated based on the previous update steps.

Fig 2 shows the path that the angle parameters take through an example P5 Ising 𝑝 = 1
QAOA landscape when starting from the same initial conditions. Notice that qPowell
does not get caught in the same local optima that COBYLA finds because the bounded 
line search is able to find a better optima.

A possible extension to qPowell is restricting the bounding hypercube more by using 
information about optimal angle tendencies as a function of index and 𝑝.

qPowell methodOuter-loop optimization for a QAOA [1]

We will use the P5 Ising problem [2] as an ongoing example. The goal is to maximize 𝐻
given a planar graph 𝐺 = 𝑉, 𝐸 .
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Using a 𝑝th level QAOA, the goal then is to find

max𝛽,𝛾 𝐶(𝛽, 𝛾)

where
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The landscape of 𝐶 has many local optima, making it difficult to optimize and highly 
dependent on the initial choice of angles. One of the reasons that 𝐶 is so hard to 
optimize is because of the difficulty of computing gradients and hessians of QAOA 
circuits, restricting us to gradient-free minimization methods that have slower 
convergence rates and worse overall performance. Most gradient-free minimization 
methods have only heuristic tendencies rather than performance guarantees. Consider, 
for example, the many local optima that various optimizers find in Fig 1. As system size 
increases, the spectral landscape becomes increasingly complex. As shown to the right, 
finding the global optima at 𝑝 = 1 tends to give good results for larger 𝑝, thus a heuristic 
that avoids local optima at small 𝑝 is needed.

The standard method for a QAOA is initializing 2𝑝 random angles and optimizing with a 
gradient-free minimization method. However, this method is highly dependent on the 
chosen initial angles and therefore returns inconsistent results as the number of qubits 
increases. Recently, an initialization strategy has been proposed in [5] that gives a 
heuristically good guess for the angles for QAOA at level 𝑝 given an optimized QAOA 
circuit at level 𝑝-1. It is based on the observation that the angles tend to be smooth 
functions of their index, and therefore interpolating 2𝑝 − 2 angles to 2𝑝 tends to be a 
good starting point. By using qPowell at level 𝑝 = 1, and then initializing the starting 
angles at each subsequent level with the interpolation method, we find consistent results 
that are independent of the two initial chosen angles.

Figs 3 and 4 show this method versus the standard method for various P5 Ising
instances, and Fig 4 includes elementary noise simulation using the noise model shown
In Fig 5.

Interpolation method [5]
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Fig: 1. Dependence of maximation on initial angles, for 𝑝 = 1.
Fig: 2. Example qPowell vs 

COBYLA parameter path

Fig: 3. Note that our method is
consistent, but this is just one of
many possible outcomes for the
standard method.

12 qubits, 15 edges

Fig: 5. The QAOA circuit with a noise model used in our simulations. 𝑍𝜆 and 𝑋𝜆 corresponds to
applying a 𝑍 or 𝑋 gate respectively with probability 𝜆. Throughout the report, we use 𝜆 = 0.005.

Fig: 4. Success probability as a function of qubits for 𝑝 = 5 QAOA. The probabilities are averaged over
many graph instances.


